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Most complex and expensive test of the environmental
test campaign

Typically last test conducted (i.e. post-vibration & EMI)
Requires coordination of all subsystems
Flight Design may be effected by testing

Detailed planning activities should begin at six-to-
eighteen months prior to testing depending on
complexity of test

Planning begins at lower levels of testing to ensure
requirements are verified:

*Subsystem *Cycling/Turn-on
*Engineering *Bake-out
Performance Thermal Balance

eScience *Operational Time



Levels of Testing

Observatory Level

Instrument Level

Subassembly Level /
Special Tests

Component Level

Development Tests




Development
Tests

FPM Series
(procedures, cal
equipment, focus,
science)

Cryosubsystem
(Thermal Balance)

EM Components
(heat straps, APG,
embedded ethane
heat pipes, path
finder, heater
controller ...)
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Cryocooler Launch Lock

System Component Test
(12 cycles)

Additional

Earthshield Cycling
(Paint)

Observatory
Level
(3TIRS
cycles)



Basic GEVS Requirements

Assembly | Vacuum | Thermal DweII Qualification Level
Level Cycles |Time

Observatory <10 Torr Four >24 hours  + 10°C beyond AFT*
Instrument <10-° Torr Four >12 hours + 10°C beyond AFT*

Component <10~ Torr Four to >4 hours +10°C beyond AFT*
Eight

*There are lots of nuisances in GEVS. Consult with thermal PDL for full understanding

of specific systems requirements (Cryogenic, fixed set-point, in-air, etc).

«Total of at least twelve cycles.

*Two hot/cold turn-on demonstrations per test (A-B side/voltage)

* >100 hrs hot, > 100 hours cold, minimum of 350 hr trouble free in vacuum.

*Thermal Predicts versus AFT
Levels can be reduced based on thermal predicts if the model is correlated
*Manufacturer’'s component qualification for some COTS may be wider than
required for project. Work with thermal PDL to select higher level limits.

* AFT — Allowable flight temperature; Can be reduced to -5°C for heater controlled systems with 70% duty cycle




NO! Requirementsvary through-out NASA.

Philosophy evolved from missions types (interplanetary, Earth
orbiting, manned flight)

May require an MOU or detailed ICD to satisfy requirements
across multiple centers.

Vendors utilize their internal testing requirements
unless GEVS/Gold Rules are specified in the contract.

Schedule and Budget may be effected by testing
requirements.




Early Planning
» Select Chamber

o Physical Size/Availability

Feed-thrus/ports (electrical, thermal, optical)
Contamination

Special needs (optical, science)

If possible, design for multiple chambers

 Determine Design Impact of Test Set-up
» Develop Cycling Plan

o Understand requirements
o Hardware schedule
o Restrictions at higher levels of assembly

o Build Verification Plan

o Review requirements
o Verify at lowest level of testing possible

» Understand Risks

o Early Developmental Testing
o Schedule-Costversus Risk

O
O
O
O

BE FLEXIBLE AND PLAN FOR CONTINGENCIES!




Early Planning

Select Chamber: TIRS example

» Physically fit both the instrument and gration equipment

» Provide consistent thermal noise background for FPM/FM tests

» Optical path for Monochromator

» Large number of electrical connectors

» LN2feed-thrus for both Cal equip, cold plates, cryopanels

» Test Cryo-Refrigerator installation for tests prior to instrument level
» Clean tent/Cryopump for contamination control

Calibration
Equipment

Mon ochromator

TIRS Sensor Unit

Chamber 225 dedicated to TIRS during
entire test program due to schedule and
background requirements.

Chamber selection influenced Cal

equipment design.

«Chamber modifications: LN2 feedthrus,
optical port cut, test cryo-refrigerator
accommodations




Early Planning
Impact to Flight Design: TIRS example

Telescope Radiator Cryocooler Radiator

Three heat pipe

working in Vertical,
This was sufficient to
reject cryocooler
dissipation predicted
by Thermal at CDR.

Long Pipe length
needed for
Vibration
Isolation elsei/f
with the cc
radiator would
have been lower

2 Dual-Bore
Ethane
Spreader He
Pipes

APG Doubler
designed to attach
mitigation heat
strap during
testing to carry
the full cryocooler
specification
power of 180 W

Flight Blanketing

APG/ Flexible Heat Strap
Used instead of Ethane
Transport Heat Pipes

For Vertical Test operation

designed to
I/F with APG Bar Low so that accommodate
Ethane Spreader Pipes would GSE strap
work in reflux mode Heat Source for Low so that

Ammonia Transfer Heat Pipes
would work in reflux mode

VERTICAL TEST CONFIGURATION FOR ALIGNMENT WITH CALIBRATIONEQUIPMENT



Originally two LDCM tests; TIRS present only in the second test. Although it was
planned to have 4 cycles in TVAC2 there was a contingency of only having 2 cycles since
TVACI had 2 cycles. Therefore TIRS cycling plan was to have a minimum of 10 cycles
prior to delivery.

Vendor versus in-house (Vendors may test to standard wider limits)

TIRS potentiometer -65 to 125 C; system level limitation +50 C qualification; More than sufficient since max flight
predicts ~ +10 C.

Types of Components - May effect test program location for lower level cycling or set-up

ELECTRONICS (l\:/l(l:zg Cyclingatcomponentand

T MU(Cryocooler)

instrumentlevel over full
EPE qualification range

SSM

Elggg;ﬁ'gom lgfzwm Cyclingatcomponentand instrument

Cryo-shells/shields level ov_erfull qual ification_ range;
COMPONENTS Eilter Operational Cycles by environmental

T elescope Radiator stress

g: rUC“;’rE/ ECO“E Cy cling for opticalstabilization (structure)and to
rEng]okte demonstrate survival with thermal-mechanical
STRUCTURAL Earthshield stress
MEMBERS Cryocooler Radiator

Damper Vendor testsatstandard wider limits
DEPLOYMENT Potentiometer

ERMs




Early Planning Build Verification Plan
TIRS Example: Requirements, Risks, and Test Program Ensuring Focal Plane < 43 K

e Requirement: FPA <43 K (Science Level 4 Spec & TIRS Thermal Design Level 5 Spec)
o 2 W maximum parasitic load (Cryocooler Design Spec & TIRS Thermal Design Level 5 Spec)
o 225W maximumdissipation (Cryocooler Design Spec & LDCM-TIRS ICD)
o 180 W maximum TMU dissipation (Thermalallocation for cryocooler radiator design)
» Identify what will be verified in TVAC testing and components
o Cryocooler performance: Heat lift capacity
o ColdTipParasiticheat load: FPA power, Thermal coupling towarm areas
o Gradientfrom FPA to cold tip: Conductive path
o Power dissipationof CCE/TMU : Function of parasiticload/gradient and cc performance
« ldentify Hardware Designs Effected by Requirements
o TMU/CCE (BATC), CCM, FPA (including mount/filter), Flexible Heat Straps, Cryocooler Radiator
* Develop Test Program based on Risk Factors/Schedule
o Cryocooler component testing late in program due to aggressive schedule

o Some FPM/EM hardware was not thermally representative but provided
insightand risk reduction

o Lower level testing (and analysis) provided good confidence that parasitic _
heat load was ~half the specification value and that the thermal link exceeded \&s
requirements. However schedulerisk if the FM cryocooler or CSS thermal
performance was different than EM units required that design of cryocooler
radiator/CCM be based on the 180 Watt specification.




Early Planning Build Verification Plan (Continued)

Cryocooler
Performance

Gradients
FPA-to-Cold
Tip

EM Unit Testing*
RISK REDUCTION

()

TIRS Example: Requirements, Risks, and Test Program Ensuring Focal Plane < 43 K

)

)

ComponentLevel at BATC
sCharacterized performance
ov er specification and

expected performance
VERIFICATION CCLevel5

FPM Testing*

*Measured gradients with
pathfinder FPA (GSE Heat
straps)

Parasitic
Heat Gain

N/

Vendor Testing
*EM andFM heat straps

Power
Dissipation

ComponentTesting
sindividual path part
conductivity
*Coatingsproperty

RISK REDUCTION/
DESIGN INPUTS

Cryosubsystem
Thermal Test

Flight-like/spare
components
except Cryocooler

GSE Sensors

EM V erification
Thermal Level 5

]

| Calibration
>Tests

FM Focus/

V ERIFICATION
Thermal Level 5

Instrument Level

V erification
FMthermal Level 5
*Science Spec
sPower Dissipation
*Gradients/Parasitic

conductance

Cryocooler Radiator & Cryocooler Mount Tests
*Verified heat pipe performance & mount

*Designsrequired tobe based on 180 W spec
value duetohardware/testschedule.

RISK REDUCTION/
DESIGN INPUTS

m—

Observatory Level
Verification
*Cryocooler
Performance post
repair




Mid-Stage Planning

Review requirements, and engineering/science functions to develop
performance tests.

Review requirements, thermal analysis, and higher level qualification plans
prior to starting the component qualification program.

Identify components that are not in test (solar arrays, flight battery, etc.)
Review schedule and adjust test plan accordingly

For example: originally the TIRS earth shield deployment test was planned to occur after the integration of the

optics/focal plane & cryocooler. However the hardware required for deployment (structure, strong back,
earth shield) was available before the cryocooler delivery. The deployment test was shifted forward (prior
to full integration) allowing TIRS to run focus/calibration testing concurrently thereby saving a month of

schedule.

Identify any long term lead items needed for testing. (simulators, cryopanels,
cryorefrigerators, control systems, etc).

For example: on WMAP the heater control racks available in our facility had “bang-bang” thermostatic

controllers. Science required high thermal stability; therefore we needed to develop new heater control
rack which interfaced with facility operator controls. This took approximately one year to develop/build.

For example: SAM required a specialized chamber simulated mars atmosphere be built, certified, and

integrated with building facility this process took several years.




When developing the scripts for and the placement of
performance/science testing

* Environmental
Ambient versus at Temperature (i.e. cryogenic, high temp)
Vacuum versus in Atmosphere
Transition versus Plateau

» Mission Influences
Voltage
Spacecraft Side



Detalled Planning




Detailed Planning
Typical Thermal Profile (instrument/Observatory Level Test)

Performance Testing

o Aliveness, Short Form Functional, Long form Functional

o Preand Post test at ambient for comparison

o Ateach plateau (SFF, LFF, or CPT); testing during transitions
o Dayinthe Life Test

Thermal Verification

o Hot Op, Cold Op, Survival Balances (specific voltage; flight environment simulation)
o Parametric Studies (Sensitivity)
o Hardware Checkout — heaters, thermostats, cryocooler, TECs, heat pipes, etc.

Thermal Qualification
o Four thermal cycles, survival soak, hot turn-on (2x), cold turn-on (2x), power down

Engineering Characterizations
o Mechanism Operation, Controller Tests, Deployments, Software, Jitter

Science/Calibration Tests
o Dependent on mission; done at plateaus and/or transitions

Contamination
o Bake-out; Contamination Certification

Note: specific testing is project dependent use as guideline only.




ST5 Observatory TVAC

Detailed Planning Develop the Test Profile
Example 1
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SAM Instrument Test 1

Detailed Planning Develop the Test Profile
Example 2
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TIRS THM-REF-0354

file: A/B Side and Voltage

Figure 2:TIRS TVAC#1- TVITB Master Test Pro

TIRS Instrument TVACL1 Pretest Profile (voltage and A/B Side)

Detailed Planning Develop the Test Profile

Example 3
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Detailed Planning Testing during Transitions
Example: CIRS Instrument Testing

_____________

* Question: Why do you need to do performance testing during transitions?
The extremes should “bound” the environmental conditions.

 Answer: Although the plateaus bound the environment they may not be

Imposing the worst-case gradients; Testing during transitions uncovers
workmanship issues.

» Example: The first test of the Main Electronics Box on the CIRS
Instrument uncovered a workmanship issue with soldering of a component.
The performance at the extreme temperatures was good; However a
repeatable anomaly occurred at an intermediate temperature. The faulty
solder joint was repaired and CIRS (Launch in 1997 on the Cassini Mission)

has been collecting data on Saturn for the past 8 years... double its mission
lifetime! CASSINI SPACECRAFT




Detailed Planning Determining GSE Set-up
» Types:

o MGSE (Scaffolding, Dollies, Slings, Accelerometers, etc.)
o EGSE (Flight System, Simulators, Non-facility controllers, etc.)
o CGSE (Scavenger plates, witness mirrors, QCMs, RGA, etc.)

o TGSE/Facilities (Heater Control Racks, Test Sensors, TCUs, IR plates, Cryopanels, Cold plates,
etc).

o Science/Calibration
» Requirements:
o Simulates flight environment
o Drives temperature to qualification levels
o GSE and personnel can fit around chamber (Floor plan)
o Facility can support harnesses (Listing of connectors/feedthrus)
O

Facility can support cold plates/cryopanels (listing of plumbing
feedthrus)

o GSE and flight hardware integration feasible (Storyboard)
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Detailed Planning Determining GSE Set-up
Example: WMAP Observatory Level Test TGSE Set-up Abbreviated
Storyboard
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Detailed Planning Determining GSE Set-up
Example: WMAP Observatory Level Test TGSE Set-up Abbreviated
Storyboard
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Detailed Planning
Emergency Planning — Anything Can Happen!

» Some Examples:

o JWST OSIM Test - Loss of Facility Power (June 2012)

o TIRS Instrument Level Test > Earthquake, Hurricane, and Fire (all within a couple of
weeks time period)

SAM Test - Solenoid Issue (Mars Gas Pressure)

ST-5 Test = Sudden Loss of Chamber Pressure

WIRE Test - Cryopanel Valve Failure

CIRS Mirror Test - LN2 Cryogen Leak

CIRS Calibration Target Test - Ice Plug

UARS MMS Test - Thermal Conditioning Unit Failure
COBE DIRBE Test—-> Loss of Facility Power

O 0O 0O 0O 0O O O

Several tests where GSE heater/power supply failed or severe
snow storms/hurricanes resulted in using emergency procedures.




Detailed Planning
Emergency Planning & Risk Tolerance

» Establish contingency plan/procedures to ensure the test article’s
safety in case of:
o Loss of Power (UPS; emergency generators)
o Loss of Vacuum
o Thermal GSE Failure (cryopaneis heaters, IR plate, Tcu)
o Chamber Control Failure “ | FlowChart
@
O

Flight Thermal Control System Failure = Example from
Flight Article Failure/Loss of Commanding

» Personnel safety and action
» Develop flow charts of actions

o Determinerisk tolerance

o Safety of Test Article
o Schedule Impacts

* Implement redundancy based on risk
tolerance

md svauars

Figure 4.5.1: §T5 SC-1 TV/ITE Test Building Fire Alarm and Evacuation




Risk Tolerance was very low due to schedule. GSE Failures that needed a chamber break to
repair would have resulted in large schedule delays (repairs plus cryogenic warm-up, additional
bake-out, and cooldown). Hardware protection as well as providing environment for
Science/Performance testing (TVAC levels) and Launch Lock Deployment were fully redundant.

Redundancy
Primary Redund. Type Notes
Cryocooler Radiator Base, Zone 1/Zone 2 1-1 2-1 P Additional protection for CC radiator +warm-up
CC rad heat block (GSE on Flight Rad) 1-2 2-2 F Protects TMU / TVAC levels
CC Rad CryoPanel 3-2 3-12 F Warm-up and LL deploy
Earthshield stub U pper 1-4 N/A N* Thermal Balance
Earthshield stub Lower 310 N/A N* Thermal Balance
Hinge panels, Lower 1-5 2-12 E Protects Damper/ TVAC levels
Hinge panels, Upper 2-8 39 F Protects Potentiometer / TVAC levels
Telescope cryopanel 1-6 3-3 F Warm-up and LL deploy
FPE panel 19 2-9 F Protects FPE/ TVAC levels
Structure enclosure + X 2-3 3-4 F
Structure_enclosure -Y 2-4 35 F
Structure Enc. +Z Upper 25 36 F Protects Structure from LN2 Walls (required for calibraion background)
Structure Encl. + Z Aperture 2-6 37 F and TVAC Levels
Structure enclosure - Z 2-7 3-8 F
MEB Heater Plate MEB HTR 2-10 F Protects MEB /TVAC levels
CCE Heater Plate CCE HTR 2-11 F Protects CCE/ TVAC levels
S/C Deck Simulator 1-7 1-8 F Protects Mounting flexures/Optical Deck
Zero Q, SUDP Harness 1 1-10 N/A N Thermal Balance
Zero Q, SUDP Harness 2 1-11 N/A N Thermal Balance
Zero Q, MechDP Harness 1-12 N/A N Thermal Balance
BB Calibrator Heater Plate BBCAL PRI HTR BBCAL RED HTR F Protects BB Cal + Science Performance
Payload Table 3-10 3-11 p Warm-up Only

F- Full P-Partial N- None
*Hinge panels will keep hardware safe




Documentation

o Test Plan

o Set-up, Test Profile Elements, Emergency Response, Personnel
Responsibilities, Success Criteria, Limits

» Constraints
o Flight and Test

* Procedures

o Set-up/Integration, Moving/Lifting, Pretest Checks, Thermal Balance,
Thermal Transitions, Functional/Science Testing

*» WOAS

o Step-by-Step Instructions/Procedure Identification

Good Documentation is Key to Successfully Conducting a TVAC test
and Verifying Requirements!




Start Planning Early!

Understand Requirements > Develop Verification Matrix
Design with Testing in Mind

Review/Adjust Test Program Continuously

Systems Team Should be Heavily Involved in Test Planning
to Ensure that Requirements will be Verified



AFT — Allowable Flight Temperature

APG — Annealed Pyrolytic Graphite

CCE — Cryocooler Control Electronics

CCM- Cryocooler Mount

CDR- Critical Design Review

CGSE — Contamination Ground Support Equipment
CIRS - Composite I nfrared Spectrometer

COBE — Cosmic Background Explorer

CSS — Cryosubsystem

EGSE —Electrical Ground Support Equipment
EM- Engineering Model

FM — Flight Model

FPA — Focal Plane Assembly

FPE — Focal Plane Electronics

FPM — Functional Performance Model

GEVS - General Environmental Verification Standard
GSE — Ground Support Equipment

GSFC - Goddard Space Flight Center

ICD- Interface Control Document

JWST — James Webb Space Telescope

LN2 — Liquid Nitrogen

MEB- Main Electronics Box

MOU — Memorandum of Understanding

MG SE — Mechanical Ground Support Equipment

NASA - National Aeronautics and Space Administration

OSIM - Optical Telescope Element Simulator
PER — Pre-Environmental Review

PDR- Preliminary Desigh Review

PSR — Pre-ship Review

SAM — Sample Analysis at Mars

SES — Space Environmental Simulator

SIRTF - Space Infrared Telescope Facility
SMEX - Small Explorers Program

SHOOT- Super-fluid Helium On-Orbit Transfer
ST5 — Space Technology 5

TEC — Thermal Electric Cooler

TGSE — Thermal Ground Support Equipment
TRACE - Transition Region and Coronal Explorer
TIRS - Thermal Infrared Sensor

TMU — Thermal Mechanical Unit

TVAC (TV)- Thermal Vacuum

TB — Thermal Balance

TRR — Test Readiness Review

UARS — Upper Atmosphere Research Satellite
ULDB - Ultra-Long Duration Balloon

WMAP - Wilkinson Microwave Anisotropy Probe
WOA- Work Order Authorization

XRS — X-Ray Spectrometer



LEVEL3 —INSTRUMENT ICD
TIRS-SC-280 The NTE internal powerdissipations for the MEB and CCE shall be as shown in Table TIRS-SC-281. (MEB 65 W and CCE 49 W).
LEVEL4 — INSTRUMENT REQUIREMENTS (TIRS-SE-SPEC-0003)
ES-496 Atthe nominal operating temperature of43 K, the FPA shall have acombination of the minimum Conversion Efficiency (CE) and Dark

Current (ID) such that the predicted (NEdT) for the 10.8 (10.5-11.5um) micron band and the 12.0um band (11.3-12.3) witha300 K targetis less
than 0.33 K.

FS-1012 The TIRSthermal control system shall meet the operating temperatureand temperature stability as defined in table 3-8. The
operational temperatureofthe non-science driven requirements are specified in TEVR. (partial requirement shown heredue to space
considerations)

LEVELS5—- CRYOCOOLER REQUIREMENTS (TIRS-SE-SPEC-0013)

CC-201 The Cooler shall provide2 W of cooling powerat its Second-Stage Load interface at an operating set-pointtemperature under38 K
giventhe Power Performancespecified in Section 3.1.2 ofthis specification.

CC-207 The Cooler shall meet the Cooling Performance specifiedin Section 3.1.1 ofthis Specification, at End Of Life (EOL) and a heat rejection
temperature of 273K, while drawing less than 225 Wof spacecraft bus power.

LEVELS5—- THERMAL REQUIREMENTS (TIRS-SE-SPEC-007)

THRM-414 The thermal subsystem shall minimize the parasitic heatgainsto ensure the cryocoolercold stage can meet cooling performance
requirements as specified in CC-201 ofcryocooler requirement document.

Systems sub-allocation ofdesigning the cryocooler radiator to 180 Watts of dissipation in the TMU



Thermal vacuum testing is the most complex and expensive of the
environmental test campaign. The Instrument/Observatory Level Test
IS the ultimate verification of the Engineering/Science requirements
over the flightenvironmental range. Early planningis essential to
ensure that all mission, project, and NASA Goddard requirements are
met. Detailed planning requires the coordination of subsystem,
software, science, and facility personnel to have a successful test
program and guarantee the safety of the hardware. This presentation
will provide an overview of the systems planning process, potential
effects on flight design/verification, basic thermal test elements and
test profile development. Real life examples from Goddard missions are
used to illustrate key points.



Ms. Mosier is senior thermal systems engineer with the NASA Goddard Space Flight Center. Working primarily on in-
house projects during her 29 years at NASA, Ms. Mosier has been instrumental in the planning and execution of over 25
instrument/observatory level thermal tests. Ms. Mosier is currently assigned as the thermal systems engineer on the
TIRS instrument for the LDCM mission that is scheduled to launch in 2013. During her career at Goddard she has
worked on many challenging projects including COBE, UARS, XRS, GRS, SHOOT, CIRS, WIRE, TRACE, SMEX-lite,
SIRTF,JWST, ULDB, LISA, WMAP, XRS, ST-5,SAM, and TIRS. This has afforded a wide-range of testing experience
from cryogenics to high-temperature systems in addition to the standard spacecraft testing. Ms. Mosier has been an
instructor for spacecraft engineering design course at the University of Maryland. She also developed and teaches a
thermal design course at NASA for civil servants and support contractors. Ms. Mosier is currently working with the
NASA Engineering and Safety Center's (NESC) to develop standard training materials for thermal testing and thermal
design/analysis.
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