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REXIS Science Goals

• One of five instrument on the OSIRIS-
REx asteroid sample return mission 
scheduled for launch in 2016

• Measures X-rays that are fluoresced 
from Bennu

• Fluorescent line energies depend on the 
electronic structure of the matter

– Provides a unique elemental 
signature

– Line strengths reflect element 
abundance
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REXIS Spectrometer Design
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NASA Risk Management

Risk Informed Decision Making (RIDM)
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NASA Risk Management Process [1]

Continuous Risk Management (CRM)

Models used extensively in risk management to identify risks, calculate the likelihood that a risk will 
manifest, analyze the consequence of a risk on the system, and to mitigate risks 

[1] NASA Risk Management Handbook. NASA-SP-2011-3422. Version 1, Nov 2011.

Risk management identifies and controls safety, technical, cost, and schedule issues that 
could impact mission success



Categories of Uncertainty

• This research focuses on design uncertainty and model 
inadequacy
– Design Uncertainty: Uncertainty in which design option will be 

chosen out of a set of design options [19]

– Model Inadequacy:  The difference between a model output and the 
true behavior of the system [7]

• Design uncertainty and model inadequacy are always high at 
the beginning of a project and decrease over the lifecycle

6[7] Brynjarsdóttir, J., & OʼHagan, A. (2014). Learning about physical parameters: The importance of model discrepancy. Inverse Problems, 30(11), 114007.
[19] Daniel Pierre Thunnissen. Propagating and mitigating uncertainty in the design of complex multidisciplinary systems. PhD thesis, California Institute of Technology, 2005.

Aleatory Epistemic

Parametric Material properties
Environmental 

properties

Nonparametric New technologies
Design Uncertainty,
Model Inadequacy



Examples of Design Uncertainty
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Examples of Model Inadequacy
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Model-Based Systems Engineering
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SE Artifacts
• Specifications
• Interface requirements
• System design
• Analysis & Trade-off
• Test Plans

INCOSE Model-Based Systems Engineering vision [15]

• Centralized, single-source-of-truth for system information
• Adds rigor and precision to the systems engineering 

process
• Similar to the introduction of CAD for mechanical design

[15] S. Friedenthal, R. Griego, and M. Sampson. INCOSE Model Based Systems Engineering (MBSE) Initiative. In INCOSE 2007 Symposium, 2007.



Risk Management with Model-Based Systems 
Engineering
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Automated Risk Product Generation:
• Fault tree generation [11]
• FMEA generation [10]
• FMECA generation [12]
• Probabilistic Risk Assessment [13]

Model-Based Systems Engineering (MBSE): the formalized application of modeling
to support systems requirements, design, analysis, verification, validation, and

operations

Applications of MBSE to Risk Management:

Capture of System Information to Support 
Risk Analyses

• Clear information capture to improve 
risk identification and analysis [9]

• Capturing component nominal and off-
nominal behavior [6, 8]

• Tying component failures to 
requirement violations [6]

MBSE expected to allow automated updating of risks when system model 
changes but no established process for:
• Determining what model changes necessitate risk updates
• Efficiently re-performing risk analyses

[6] Jean-Francois Castet, Magdy Bareh, Jeffery Nunes, Steven Jenkins, and Gene Lee. Fault management ontology and modeling patterns. In AIAA SPACE 2016, page 5544. 2016.
[8] Cressent, R., David, P., Idasiak, V., & Kratz, F. (2013). Designing the database for a reliability aware Model-Based System Engineering process. Reliability Engineering & System Safety, 111, 171-182.
[9] Evans, J., Cornford, S., & Feather, M. S. (2016, January). Model based mission assurance: NASA's assurance future. In Reliability and Maintainability Symposium (RAMS), 2016 Annual (pp. 1-7). IEEE.
[10] Hecht, M., Dimpfl, E., & Pinchak, J. (2014, November). Automated Generation of Failure Modes and Effects Analysis from SysML Models. In Software Reliability Engineering Workshops (ISSREW), 2014 IEEE International Symposium on (pp. 62-65). IEEE.
[11] Faida Mhenni, Nga Nguyen, and Jean-Yves Choley. Automatic fault tree generation from sysml system models. In Advanced Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference on, pages 715–720. IEEE, 2014.
[12] Michel Izygon, Howard Wagner, Shira Okon, Lui Wang, Miriam Sargusingh, and John Evans. Facilitating r&m in spaceflight systems with mbse. In Reliability and Maintainability Symposium (RAMS), 2016 Annual, pages 1–6. IEEE, 2016.
[13] Sam Schreiner, Matthew L Rozek, Andy Kurum, Chester J Everline, Michel D Ingham, and Jeffery Nunes. Towards a methodology and tooling for Model-Based Probabilistic Risk Assessment (PRA). In AIAA SPACE 2016, page 5545. 2016.



Motivation - Overview
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Are there areas for improvement in 
NASA’s risk management process?

Does NASA’s risk management 
process adequately address all 

categories of uncertainty?

1. Design change only performed in 
contingency

2. Risk mitigation re-planning only 
triggered on mitigation plan inadequacy

3. Risk re-analysis only triggered on 
inadequacy of mitigation plan built off of 
risk analysis model

Do space missions tend to 
experience programmatic and/or 

technical issues?

Evidence shows programmatic 
overruns are common and technical 
failures occasionally occur [2-5, 20]

[2] D.L. Emmons, M. Lobbia, T. Radcliffe, and R.E. Bitten. Affordability Assessments to Support Strategic Planning 
and Decisions at NASA. In Aerospace Conference, 2010 IEEE, 2010.
[3] Report of the Columbia Accident Investigation Board Volume I. Technical report, 2003.
[4] A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, P. Burr, and D. Dipprey. 
Report on the loss of the Mars Polar Lander and Deep Space 2 missions. 2000.
[5] Glenn Reeves and Tracy Neilson. The Mars Rover Spirit Flash Anomaly. In Aerospace Conference, 2005 IEEE, 
pages 4186–4199. IEEE, 2005.
[20] Robert E Levin and GAO Director. Space acquisitions: Stronger development practices and investment 
planning needed to address continuing problems. Statement to the House Armed Services Committee, 
Subcommittee on Strategic Forces, 2005.



Risk Management Shortcomings

• Design change only performed in contingency

• Risk mitigation re-planning only triggered on mitigation plan 
inadequacy

• Risk re-analysis only triggered on inadequacy of mitigation 
plan built off of risk analysis model
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Risk Management Shortcomings

• Design change only performed in contingency

• Risk mitigation re-planning only triggered on mitigation plan 
inadequacy

• Omitting Risk Re-Analysis
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CRMRIDM

1. New risk with no mitigation within current 
requirements

2. Inability to control existing risk



Risk Management Shortcomings

• Design change only performed in contingency

• Risk mitigation re-planning only triggered on mitigation plan 
inadequacy

• Risk re-analysis only triggered on inadequacy of mitigation 
plan built off of risk analysis model
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CRM
Identify

Analyze

Plan
Track

Control
If the risk cannot be controlled, 

change to existing risk

If the risk can’t be 
controlled, write new risk

Risk can be 
controlled with 

current plan



CRM
Identify

Analyze

Plan
Track

Control
If the risk cannot be controlled, 

change to existing risk

Risk Management Shortcomings

• Design change only performed in contingency

• Risk mitigation re-planning only triggered on mitigation plan 
inadequacy

• Risk re-analysis only triggered on inadequacy of mitigation 
plan built off of risk analysis model
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Risk Management Shortcomings

• Design change only performed in contingency
– Decisions made using RIDM are only revisited when risks cannot be adequately 

mitigated in the CRM process
• No re-analysis mechanism inherent to the RIDM process

– Design changes that improve on existing and adequate plans are not considered

• Risk mitigation re-planning only triggered on mitigation plan inadequacy
– Risk mitigations only replanned when existing risk mitigation plan is inadequate

– Risks mitigations plans do not necessarily evolve as the system changes
• In real missions, risks are typically examined on a monthly basis and mitigation plans can be 

updated

• Risk re-analysis only triggered on inadequacy of mitigation plan built off of 
risk analysis model
– Risk re-analysis relies on output of risk analysis model

– If risk analysis model is insensitive to system changes, then it won’t be updated 
to track those changes

• How to address these shortcomings?
– Re-analyze all risks whenever new information is learned

• Able to take advantage of new possibilities for improved risk mitigations

• Decouples risk re-planning from risk analysis model output

• Re-analysis must be done efficiently to avoid excessive wasted effort
16



Programmatic Overruns
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Cost and schedule overruns for selected NASA projects between 1992 and 2007. 
The average cost overrun is 27% and the average schedule overrun is 22% with 

cost and schedule overruns being correlated [2].

DoD space systems also have experienced drastic programmatic overruns [20]

– AEHF: Cost ↑ 50%, Schedule → 3yrs

– NPOESS: Cost ↑ 10%

– SBIRS-High: Cost ↑ 150%, Schedule → 6yrs

[2] D.L. Emmons, M. Lobbia, T. Radcliffe, and R.E. Bitten. Affordability Assessments to Support Strategic Planning and Decisions at NASA. In Aerospace Conference, 2010 IEEE, 2010.
[20] Robert E Levin and GAO Director. Space acquisitions: Stronger development practices and investment planning needed to address continuing problems. Statement to the House Armed Services Committee, Subcommittee on 
Strategic Forces, 2005.



Technical Mishaps

• Space Shuttle Columbia [3]
– Mishap: Loss of mission due to foam strike on left wing leading edge leading to orbiter burn 

up during reentry
– Foams strikes were known to occur, but not regarded as safety issue

• Seen on previous flights, but never caused clear threat to mission

– Risk Management Failure: Consequence of foam strike risk drastically underestimated
• Model inadequacy in model for consequence of foam strike

• Mars Polar Lander (MPL) [4]
– Mishap: Loss of mission likely due to premature thruster cutoff due to errant touchdown 

signal
– Incorrect touchdown logic missed in software and system testing due to requirements 

flowdown error and re-test configuration oversight
– Risk Management Failure: Unidentified risk due to gap in requirements flowdown and 

testing configuration
• Design uncertainty in test sequence. Did not account for the changes made to the test sequence

• Mars Exploration Rovers (MER) [5]
– Mishap: Near loss of Spirit rover from battery depletion due to FLASH memory bug
– Internal file system did not delete files correctly, eventually ran out of memory space to 

create new files in
– Memory allocation service hung, causing the rover to continuously reset
– Continuous resets gradually drained battery but were able to be stopped before loss of 

mission
– Risk Management Failure: Unknown software interactions and gap in ground verifications

• Model inadequacy in model of the consequence of the internal file system bug
18[3] Report of the Columbia Accident Investigation Board Volume I. Technical report, 2003.

[4] A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, P. Burr, and D. Dipprey. Report on the loss of the Mars Polar Lander and Deep Space 2 missions. 2000.
[5] Glenn Reeves and Tracy Neilson. The Mars Rover Spirit Flash Anomaly. In Aerospace Conference, 2005 IEEE, pages 4186–4199. IEEE, 2005.



Problem Statement
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Hypothesis: By leveraging model-based systems engineering 
and algorithms from incremental planning, the risk 

management process can better identify the ramifications of 
new information as it is gained during the design process and 

can rigorously update risk estimates.

Can risk management be improved to avoid the 
common occurrence of cost and schedule 

overruns or technical failures?



Decision-based Design Process

• Design as a series of decisions/trade studies that iteratively 
refine an initial design [14][21]

• Each decision is made under a state of knowledge (context)

• New information is learned during the design process as a 
result of testing, analysis, design decisions, etc.

• The new information may mean that previous decisions are no 
longer optimal/violate constraints

20[14] Hazelrigg, G. A. A framework for decision-based engineering design. Transactions-American Society of Mechanical Engineers Journal of Mechanical Design, 120, 653-658., 1998.
[21] Steven R Hirshorn, Linda D Voss, and Linda K Bromley. NASA Systems Engineering Handbook. 2017.



Epistemic Uncertainty in Incremental Planning
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[16] Koenig, S., Likhachev, M., & Furcy, D. (2004). 
Lifelong planning A∗. Artificial Intelligence, 155(1-2), 93-
146.

• Similar to design process in that no truth data available
– Plan based on best information available at the time

• Addresses epistemic uncertainty through efficient updates to 
incorporate new information
– Leverage previous search results to speed up the search for a new 

solution

• Lifelong Planning A* algorithm (LPA*) [16]



Model Inadequacy in Incremental Planning

• Similar to design process in that no truth data available
– Plan based on best information available at the time

• Addresses epistemic uncertainty through efficient updates to 
incorporate new information
– Leverage previous search results to speed up the search for a new 

solution

• Lifelong Planning A* algorithm (LPA*) [16]
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[16] Koenig, S., Likhachev, M., & Furcy, D. (2004). 
Lifelong planning A∗. Artificial Intelligence, 155(1-2), 93-
146.



Lifelong Planning A* Algorithm
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Methodology Overview

1. Build a system model that records all design decisions, the 
design decision making process, and design products (chosen 
point design, risks, etc.)

2. When new information is learned, identify which portions of 
the system may have to change

3. Efficiently find new design solution reusing knowledge where 
possible and update risk analyses

24Methodology may be performed manually or automatically



Methodology – Build System Model
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Detector Heat 
Rejection 
Method

Inputs:
Detector heat dissipation
Detector temperature
Detector location
Presence of thermoelectric cooler
S/C interface temperature

Options:
Reject to deep space
Reject to S/C

Methodology:
Reject to S/C if possible, if not, 
reject to deep space

Step 1 Step 2 Step 3

Output: System Model

• System model must include:
– Design Decisions

• Inputs

• Options

• Methodology

– Decision Tree Structure

– Chosen Point Design

– Risks



Methodology – Build System Model
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Step 1 Step 2 Step 3

Output: System Model

Isolated vs. 
Conductive

S/C Thermal 
Interface 

Type

Passive vs. 
Active

Thermal 
Architecture

S/C vs. Space

Detector Heat 
Rejection

S/C vs. Space

Ebox Heat 
Rejection

• System model must include:
– Design Decisions

• Inputs

• Options

• Methodology

– Decision Tree Structure

– Chosen Point Design

– Risks



Methodology – Build System Model
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Step 1 Step 2 Step 3

Output: System Model

Isolated

S/C Thermal 
Interface 

Type

Passive

Thermal 
Architecture

Space

Detector Heat 
Rejection

Space

Ebox Heat 
Rejection

S/C EBox

Det.

Rad.

Rad.
high klow k

low k

high k

S/C Isolation 
Req• System model must include:

– Design Decisions
• Inputs

• Options

• Methodology

– Decision Tree Structure

– Chosen Point Design

– Risks



Methodology – Build System Model
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• System model must include:
– Design Decisions

• Inputs

• Options

• Methodology

– Decision Tree Structure

– Chosen Point Design

– Risks

Step 1 Step 2 Step 3

Output: System Model

Isolated

S/C Thermal 
Interface 

Type

Passive

Thermal 
Architecture

Space

Detector Heat 
Rejection

Space

Ebox Heat 
Rejection

S/C EBox

Det.

Rad.

Rad.
high klow k

low k

high k

S/C Isolation 
Req

Detector 
Overheating

TRad,hot

Det. Dissipation
TEBox,hot

TS/C,hot



• When new information is learned:

– Identify which decisions are affected

• Is the changed variable in any decision 
justifications?

– All decisions downstream from 
changed decisions could change as 
well

Methodology – Incorporate new Information
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Isolated

S/C Thermal 
Interface 

Type

Passive

Thermal 
Architecture

Space

Detector Heat 
Rejection

Space

Ebox Heat 
Rejection

S/C Isolation 
Req

Step 1 Step 2 Step 3

S/C EBox

Det.

Rad.

Rad.
high klow k

low k

high k

Output: List of changed decisions

TS/C,hot

Detector 
Overheating

TRad,hot

Det. Dissipation
TEBox,hot



• When new information is learned:

– Identify which decisions are affected

• Is the changed variable in any decision 
justifications?

– All decisions downstream from 
changed decisions could change as 
well

Methodology – Incorporate new Information
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Step 1 Step 2 Step 3

Isolated

S/C Thermal 
Interface 

Type

Passive

Thermal 
Architecture

Space

Detector Heat 
Rejection

Space

Ebox Heat 
Rejection

S/C EBox

Det.

Rad.

Rad.
high klow k

low k

high k

Output: List of changed decisions

TS/C,hot

Detector 
Overheating

TRad,hot

Det. Dissipation
TEBox,hot



Methodology – Find New Solution
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• Starting with decisions near root of 
decision tree, remake decisions using 
recorded algorithm

• After each decision, try to infer whether 
any other decisions can be made

• Where decisions remain open, use LPA*-
like algorithm to search design space
– Reuses information from previous 

searches
– Only makes decisions necessary to find 

optimal solution

Step 1 Step 2 Step 3

Conducted

S/C Thermal 
Interface 

Type

Passive

Thermal 
Architecture

Space

Detector Heat 
Rejection

S/C

Ebox Heat 
Rejection

S/C EBox

Det.

Rad.

low k

high k

high k

Output: New design, new risk analysis

TS/C,hot

Detector 
Overheating

TRad,hot

Det. Dissipation
TEBox,hot



Methodology – Find New Solution
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Step 1 Step 2 Step 3

Conducted

S/C Thermal 
Interface 

Type

Passive

Thermal 
Architecture

Space

Detector Heat 
Rejection

S/C

Ebox Heat 
Rejection

S/C EBox

Det.

Rad.

low k

high k

high k

Output: New design, new risk analysis

TS/C,hot

Detector 
Overheating

TRad,hot

Det. Dissipation
TEBox,hot

• Starting with decisions near root of 
decision tree, remake decisions using 
recorded algorithm

• After each decision, try to infer whether 
any other decisions can be made

• Where decisions remain open, use LPA*-
like algorithm to search design space
– Reuses information from previous 

searches
– Only makes decisions necessary to find 

optimal solution



Case Studies

• Regolith X-ray Imaging Spectrometer (REXIS)

– X-ray instrument on NASA OSIRIS-REx mission

– Can compare results with historical risk management methodology

– Performance Metric: Number of risks found with my approach that 
were not found historically

• NASA GSFC Mission Design Lab (MDL) Study

– Provides example of early lifecycle design challenges

– Can do independent comparison with current NASA risk 
management methodology

– Will hypothesize alternative design solutions to mitigate possible 
future risks

– Performance Metric: Number of risks found with my approach post-
study that were not identified during the study

33



Thank you!

Questions?
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Background – Uncertainty Definitions

• Aleatory vs. Epistemic [17]
– Aleatory Uncertainty: Randomness intrinsic to a phenomenon

– Epistemic Uncertainty: Uncertainty from a lack of knowledge about 
a phenomenon

• Parametric vs. Nonparametric [18]
– Parametric Uncertainty: Uncertainty associated with model 

parameters

– Nonparametric Uncertainty: Uncertainty not dependent on the 
model parameters

• Design Uncertainty: Uncertainty in which design option will be 
chosen out of a set of design options [19]

• Model Inadequacy:  The difference between a model output 
and the true behavior of the system [7]
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