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Introduction

 For simple systems and operations, risk tradeoffs are easy. 

 For complex systems the risk tradeoffs are harder: airplanes For complex systems the risk tradeoffs are harder: airplanes, 
automobiles, nuclear power plants, rockets.

 Safety is not obvious in complex systems, in part because we y y
cannot rely on experience.

 Understanding the risks in complex systems requires a systematic 
approach: system safetyapproach: system safety.
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System Safety Defined

System Safety: the application of special technical and managerial 
skills to the systematic, forward-looking identification and control of 
hazards throughout the life cycle of a project program or activityhazards throughout the life cycle of a project, program, or activity.

• System safety is both a management doctrine and an engineering 
discipline

• System safety is forward-looking, not just experienced-based

• System safety seeks to design-in safety and assure that safety is 
considered throughout developmentconsidered throughout development

• System safety is implemented through a System Safety Process

The objective of system safety is to prevent accidents
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System Safety Is Used in Many Industries

System safety analyses are being used to identify hazards and safety 
risks in the design and operation of:

C i l i ft• Commercial aircraft 
• Automobiles
• Railroads and subways
• Passenger and freight ships
• Mine operation systems 
• Chemical production plants 
• Power generating plants, including nuclear
• Military systems
• Medical devicesMedical devices
• Space launch vehicles and space systems 
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System Safety Process

System Safety Process: the structured application of safety 
management and engineering principles, criteria, and techniques to 
address safetyaddress safety.

A System Safety Process generally includes the following elements:

• Safety planning• Safety planning

• Hazard identification

• Hazard risk assessment, and associated risk decision making

• Risk reduction and hazard controls

• Risk reduction verification

• Hazard tracking and anomaly reporting
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Hazard/Hazard Analysis Defined

Hazard: The potential for harm.

Hazard Analysis: Identification and evaluation of existing and potential y g p
hazards and hazardous conditions and the recommended mitigation for 
the hazard sources and risk found.

A hazard is the potential for harm, but hazards can become accidents if 
the conditions are right.

Hazard Accident
• Human actions• Human actions
• Hardware failure
• Environment
• Etc.
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Software and Computing System Safety

Software Safety: the aspects of software engineering and software 
assurance that provide a systematic approach to identifying, analyzing, 
and tracking software mitigation and control of hazards and hazardousand tracking software mitigation and control of hazards and hazardous 
functions (e.g., data and commands) to ensure safer software operation 
within a system.*

Software Safety:
• is a system safety issue

• is not just an activity for software engineers to worry about

• efforts should be included in each element of the system 
f tsafety process
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Why Should We Worry?

• When system safety and software safety methods are used correctly 
they can help us prioritize resources, reduce risk, and prevent 
accidentsaccidents.

• When applied inappropriately, system safety methods can lead to 
overconfidence, underestimation of risks, and spending resources on , , p g
the wrong things.

• Broad concerns:
 Failures in the implementation of the System Safety Process with respect to 

software and computing systems

 Underestimation of the importance of software engineering and support 
processes (configuration management, quality assurance, etc.)
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C St diCase Studies: 
System Safety ProcessSystem Safety Process

10



Why Study Accidents?

“Anticipating and identifying how a design can fail – or even just be 
perceived to fail – is the first step in making it a success.”                            

- Henry Petroski, Success Through Failure

“Progress, far from consisting in change, depends on retentiveness. 
Those who cannot remember the past are condemned to repeat it.” 

- George Santayana

“I don’t want to make the wrong mistake.” 
Y i B- Yogi Berra
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System Safety Process

A System Safety Process generally includes the following elements:

• Safety planning• Safety planning

• Hazard identification

• Hazard risk assessment, and associated risk decision making

• Risk reduction and hazard controls

• Risk reduction verification

• Hazard tracking and anomaly reportingHazard tracking and anomaly reporting

12



Case Studies: 
System Safety Processy y

Safety Planningy g

13



Safety Planning

• Safety planning includes:
 planning for the management of system safety
 emergency planning in case something goes wrong

• System safety planning is typically implemented through a System 
Safety Program Plan (SSPP)Safety Program Plan (SSPP)

• Emergency planning is typically implemented through emergency 
response plans, a.k.a., emergency action plans, mishap 

d d ti l i h lpreparedness and contingency plans, or mishap response plans

Safety must be planned to be effective.Safety must be planned to be effective.
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System Safety Planning: Accident

• On August 11, 1985, Union Carbide’s Institute, West Virginia facility leaked 
methylene chloride and aldicarb oxime, toxic chemicals used to manufacture 
the pesticide Temik. Six employees were injured, and more than 100 residents p p y j ,
were sent to the hospital. 

• The release was traced to a 
storage tank that was overheated g
due to a leak in a steam valve, 
allowing steam to leak into a 
heating jacket.

• Overheating caused a runaway 
reaction to occur, resulting in 
release of toxic gases.
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System Safety Planning: Software

• After the Bhopal accident, Union Carbide had installed a computerized air-
monitoring system that could identify and detect releases of hazardous gases 
and predict whether the gases would be contained within the release area. 

• Company officials initially stated that the 
computer that was supposed to inform 
them whether a gas cloud would be 
contained had failed. 

• However, Union Carbide officials later 
admitted that the computer system had 

b d t d t tnever been programmed to detect 
aldicarb oxime. 

• The company had only purchased the 
basic (low cost) version of the cloudbasic (low cost) version of the cloud 
diffusion/prediction software. 
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System Safety Planning: Lessons

• System safety activities must begin early in development to be effective.

• Many safety decisions are actually made prior to acquisition or design.

• Risk decisions in relation to cost, schedule, performance, and safety 
are often defined in the acquisition strategy.

• Space system related mishaps:

 CONTOUR

 NEAR

 Phobos 1

References:
Pool, B., “System Wrongfully Blamed in Union Carbide Leak : SAFER Fights Off Dark Cloud of Bad Publicity,” Los 
Angeles Times, August 20, 1985.
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Schlager, N., Breakdown: Deadly Technological Disasters, Visible Ink Press, 1995.
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Typical Hazard Identification Methods

Hazard: A potential for harm

Several approaches are typically used to help identify hazards:Several approaches are typically used to help identify hazards:

 Hazardous element and component checklists based on previous 
experience and analyses

 Updating a hazard analysis developed from a previous program

 Use of design practices, regulations, and standards to assist in the 
development of analysesp y

 Identification of failure states --- failure to operate, operates 
incorrectly/erroneously, operates inadvertently, etc.

Review of accident reports Review of accident reports
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Hazard Identification: Accident

• On January 8, 1997, an employee of Central Pre-Mix Concrete in Yakima, 
Washington was fatally injured during maintenance operations. 

• Sand and gravel wasSand and gravel was 
transported by over-the-road 
trucks from an off-site pit to the 
plant for washing and screening.  
A bl d ill ith 3 f t di tA blade mill with 3-foot diameter 
blades preconditioned the 
aggregates. The product was 
sold or used to supply the pp y
company's ready mix operation.

• The employee died when the 
blade mill in which he was 
working inadvertently started up. 
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Hazard Identification: Software

• At the time of the accident the employee was thawing frozen material inside the 
blade mill and replacing broken and worn paddle tips. 

• While the employee performed this work otherWhile the employee performed this work, other 
workers were replacing a faulty breaker. 

• The mill was controlled by a Programmable 
Logic Controller (PLC). g ( )

• The PLC logic had been modified in 1996 to 
address issues associated with power losses. 
However, this modification resulted in power 

fbeing returned to components after a power 
failure.

• The faulty breaker was replaced and reset while 
the employee was in the mill and resetting thethe employee was in the mill, and resetting the 
breaker caused the PLC to power up as well. 
The PLC issued a command to power the mill on 
start-up.
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Hazard Identification: Lessons

• Hazard identification must include: 
 software/computing system causes
 failures of single components and scenarios where multiple thingsfailures of single components and scenarios where multiple things 

go wrong

• Software and computing system hazard analysis must include human 
error process issues and hardware failures in addition to softwareerror, process issues, and hardware failures in addition to software 
errors (coding, logic, inputs, commanding, etc.).

• Start-up and shut-down must occur in safe states.

• Space system related mishaps:
 Viking inadvertent thruster firing
Mars Polar LanderMars Polar Lander
 Ariane 5

Reference:
U.S. Mine Safety and Health Administration, Accident Investigation Report: Fatal Machinery Accident, Yakima - Pre-Mix #6, 
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U S e Sa ety a d ea t d st at o , cc de t est gat o epo t ata ac e y cc de t, a a e #6,
Central Pre-Mix Concrete Company, Yakima, Yakima County, Washington, January 8, 1997, Mine ID No. 45-00995, 1997. 
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Risk Assessment Defined

Risk: the potential for an undesirable consequence.

• LikelihoodLikelihood

• Severity
Risk

Risk Assessment:
Qualitative severity and

• What can go wrong?

• How likely is it?

Qualitative severity and 
likelihood “scoring 
methods” are used to 
assess risk, often 

• What are the consequences? supplemented by 
quantitative analyses
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Risk Assessment: Accident

• On February 25, 2009, Turkish Airlines flight 1951 crashed short of the runway 
while attempting to land at Amsterdam Schiphol Airport on a flight from Istanbul, 
Turkey. 

• Nine people were killed in 
the accident, including all 
three pilots. 

• The accident report identified 
several factors leading to the 
crash, including the aircraft’s 
automated responses toautomated responses to 
sensor failure, crew actions, 
and training.
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Risk Assessment: Software

• As the aircraft was landing the left radio altimeter suddenly indicated an 
erroneous value of -8 feet. 

• The autothrottle software should haveThe autothrottle software should have 
handled this error and switched to the right 
radio altimeter. Negative values instead 
activated a computer system mode that set 
th i th t t IDLEthe engine thrust to IDLE.

• The aircraft lost speed, and the crew did not 
recognize the problem until it was too late.
Th i k f l i di lti t h d b• The risk of losing a radio altimeter had been 
evaluated prior to the accident  based on 
failure data; the calculated risk fell below 
that necessary for corrective actions. y
However, the risk was calculated based on 
total flight hours instead of exposure time 
during the landing phase. 
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Risk Assessment: Lessons 

• Software and computing system risks are often underestimated 
because of misunderstandings of complexity and false assumptions.

• Realistic risk assessments must include sensor (input) failures and 
effector faults in addition to software errors.

• The preconditions for mode change must be analyzed and understood• The preconditions for mode change must be analyzed and understood. 

• Effective testing must be implemented and include off-nominal 
conditions to validate risk assessments.

• Space system related mishaps:
 X-31

Titan IV B/Milstar Titan IV B/Milstar

Reference:
The Dutch Safety Board, “Crashed During Approach, Being 737-800, near Amsterdam Schiphol Airport, 25 February 2009,”
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The Dutch Safety Board, Crashed During Approach, Being 737 800, near Amsterdam Schiphol Airport, 25 February 2009,  
Project Number M2009LV0225_01, May 2010.
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Hazard Controls

• Implementation of safeguards (the hazard controls), and designing 
safety into the system (not analysis) reduces the risk. 

• A basic tenet of system safety is that safety should be designed in, 
not simply added on after the fact.

• Hazard controls are used to design in safety to prevent accidents.

• Hazard controls are devices and approaches to mitigate risk• Hazard controls are devices and approaches to mitigate risk 
presented by a hazard by reducing either the severity of the hazard 
or the probability of its occurrence. 
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Design Order of Precedence

System safety follows a preferred order of precedence for 
eliminating or mitigating risk:

• Eliminate the hazard or reduce the risk through design selection.

 Substituting a hazardous material with a nonhazardous one, 
simplifying or modifying the design or reducing the amount ofsimplifying or modifying the design, or reducing the amount of 
hazardous material. 

• Incorporate engineered safety features and devices. 

 Devices could be active features, such as elevator braking systems or 
interlocks, or passive systems, such as guardrails and personal 
protective equipment. 

• Use warning devices

• Implement procedures and training
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Hazard Controls: Accident

• On December 14, 2005, the upper reservoir of the Taum Sauk Pumped Storage 
Power Plant in Reynolds County, Missouri was overtopped during a pumping 
cycle, resulting in failure of an embankment. 

• In normal operations, water 
flowed from the upper reservoir 
to a lower reservoir during the 
d l i i d iday to generate electricity during 
peak times, then was pumped 
back during off-hours using 
excess electricity.excess electricity.

• More than a billion gallons of 
water rushed through an empty 
campground and destroyed a 
home occupied by a state park 
superintendent and his family, 
sweeping them over a quarter 
mile away

31
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Hazard Controls: Software

• To reduce the risk of overtopping, water levels were monitored with pressure 
transducers; conductivity probes were also used in case of a problem with the 
pressure transducers.

• A Programmable Logic Controller (PLC) was designed to command shut down 
of the pumps when the water was 2 feet from the top; there was a 60-sec delay 
before alarms would sound to account for water movement. Automatic 
shutdown occurred when pressure transducers or two probes showed high 
water after the 60-sec delay.

• The pressure transducers became detached and gave erroneous readings.

• One of the two conductivity probes was placed too high; with the 60-sec delay, 
the pumps never shut down. 

• The construction of the embankment and the lack of an overflow spillway• The construction of the embankment and the lack of an overflow spillway 
contributed to the accident.
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Hazard Controls: Lessons

• Designing out the hazard is more effective in most cases than safety 
devices, and passive safety devices are generally more effective than 
active (automated) controls.active (automated) controls.

• Redundancy may provide a false sense of security, and may not truly 
exist when we need it.

• Hazard controls must be independent and verifiable• Hazard controls must be independent and verifiable.
• Software hazard controls are only as effective as the sensors and 

effectors associated with them.
• Space system related mishaps:

 STS-51F
 STRV 1-C

Reference:
FERC Independent Panel of Consultants (IPOC), “Taum Sauk Upper Dam Breach FERC No. P-2277 Technical Reasons for 
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C depe de t a e o Co su ta ts ( OC), au Sau Uppe a eac C o ec ca easo s o
the Breach of December 14, 2005,” May 24, 2006.
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Verification of Risk Reduction

• The safety verification and validation process is intended to 
determine that the design solution has met all the safety 
requirements (verification) and that the correct system is being built 
(validation). 

• The verification and validation process if performed correctly will• The verification and validation process, if performed correctly, will 
provide evidence that risk has been reduced. 

• Hazard controls identified in the system safety process should be 
translated into a set of measurable and verifiable safety 
requirements to allow engineering implementation of those 
safeguards.
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Verification Methods

Acceptable methods for verification

• Analysis including models simulations algorithms similarity• Analysis, including models, simulations, algorithms, similarity

• Test, including functional, environmental, etc.

• Demonstration, such as clearances, accessibility, fit, reliability, 
etc.

• Inspection, such as workmanship, dimensions, quality, physical 
conditions, software documentation, etc.
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Verification: Accident

• On June 22, 2009, a Washington Metropolitan Area Transit Authority (WMATA) 
Metrorail train traveling on the Red Line near the Fort Totten station struck the 
rear of another rail car.rear of another rail car. 

• Nine people were killed in 
the accident, and 52 others 
were transported to area p
hospitals for treatment. 

• The NTSB determined that 
the probable cause of the 

id f il f haccident was a failure of the 
track circuit modules.
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Verification: Software

• A “parasitic oscillation” generated by power output transistors of the track-circuit 
transmitter created a spurious signal.

• The spurious signal fooled the automatic train control system into thinking theThe spurious signal fooled the automatic train control system into thinking the 
track was clear when in fact another train was on the track.

• The automatic train control system 
allowed the second railcar to proceed p
forward and strike the car already on 
the track.

• Previous incidents of spurious signals 
h d b t dhad been reported. 

• WMATA failed to employ system wide 
track circuit verification tests to assure 
that the automatic control system wouldthat the automatic control system would 
function as expected under conditions 
of spurious signals.
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Verification: Lessons

• Complex systems can be difficult to verify, and require multiple 
approaches.

• Testing should be conducted under realistic operating conditions, 
including known failures and anomalous conditions.

• Testing should not be limited to components but also to systems to• Testing should not be limited to components but also to systems to 
identify unexpected interactions.

• Space system related mishaps:p y p
 Lewis Spacecraft
 WIRE

Reference:
U.S. National Transportation Safety Board, “Collision of Two Washington Metropolitan Area Transit Authority Metrorail
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U.S. National Transportation Safety Board, Collision of Two Washington Metropolitan Area Transit Authority Metrorail 
Trains Near Fort Totten Station, Washington, D.C., June 22, 2009,” NTSB/RAR-10/02, Synopsis July 27, 2010.
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Hazard Tracking/Anomaly Reporting

• Learning from failure is critical to improving safety.

• Hazards, controls, verifications, and problems discovered in 
development must be documented in order to learn. 

H d t ki d l ti t l t h l• Hazard tracking and anomaly reporting are tools to help an 
organization learn. 

• Simply having those tools is not enough a process must be in• Simply having those tools is not enough – a process must be in 
place to assure that the tools are used to prevent accidents, and 
personnel must be trained and provided guidance in the use of the 
toolstools. 
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Anomaly Reporting: Accident

• On December 18, 2000, the tug Miller Richmond was towing two barges when 
one of the barges struck the Pitt River Highway Bridge in British Columbia, 
Canada. The collision caused extensive damage to the pier and the barge, but 
no one was injured. 

• Just prior to the accident the tug 
was approaching the bridge and 
th t i f d b th b idthe tug was informed by the bridge 
tender that the south span of the 
bridge would not open. 

• The tug started to turn the barges• The tug started to turn the barges, 
then was informed that the bridge 
was open. In attempting to turn 
back the barges struck the pier.
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Anomaly Reporting: Software

• Two sets of Programmable Logic Controllers (PLC) controlled the operation of 
bridge span electric motors. The bridge tender initiated an operation on the 
display screen and the PLC issued commands to open or close the bridge.

• On the day of the accident the bridge tender initiated operations from his 
display screen but the PLC never issued the command.

• The PLC system was installed in 1998, but testing of the new computerizedThe PLC system was installed in 1998, but testing of the new computerized 
system was insufficient following its installation. 

• In the year 2000 approximately 40% of attempted bridge openings failed, but 
these problems were not sufficiently investigated or resolved.p y g
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Anomaly Reporting: Lessons

• Formal systems must exist to report anomalies and analyze trends.

• Organizations must do more than report anomalies, but they must act O ga at o s ust do o e t a epo t a o a es, but t ey ust act
on them, including identification of root cause and corrective actions.

• Testing should not be limited to components; system testing should 
l b d t id tif t d i t tialso be done to identify unexpected interactions.

• Space system related mishaps:
 DART DART

Reference:
Transportation Safety Board of Canada (TSB), “Striking of a Bridge Tugboat Miller Richmond and Barges Miller 201 and 
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Miller 206 Pitt River Highway Bridge British Columbia 18 December 2000,” Report Number M00W0303, May 6 2003.
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Software Engineering & Supporting Processes

Inattention to software engineering and supporting processes has 
contributed to a number of accidents:

• Configuration/Change Management

• Quality assurance

• Maintenance

• Training

• Supplier Management

• Documentation
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Configuration/Change Management: Hatch

• On March 7, 2008, the Edwin I. Hatch Nuclear Power Plant in Georgia was 
inadvertently forced into a controlled emergency shutdown.

• An update was installed to software usedAn update was installed to software used 
to perform both business functions and to 
monitor chemical and diagnostic data of 
primary control systems. After installing the 

d t th t t iupdate the computer system engineer 
rebooted the system.

• Rebooting the system caused the safety 
systems to erroneously interpret the lacksystems to erroneously interpret the lack 
of data as a drop in the water reservoirs 
that cool the radioactive fuel rods. System 
software then initiated the shutdown. 

• Following this incident improvements were 
made to separate safety-critical software 
from business support software.
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Quality Assurance: Panama Radiation Therapy

• Between Aug. 2000 and March 2001, 28 patients received excessive dosages 
during radiation treatments in Panama; many died from the treatments.

• Software calculates dosages and radiationSoftware calculates dosages and radiation 
times, in part based on number of protective 
“blocks”.

• Software limited inputs to 4 blocks, but p ,
doctors wanted 5 for some patients. Doctors 
used a single block 5 times as thick, not 
realizing calculations were different.
O i i i l• Operating instructions were unclear, no 
operator feedback was provided, and output 
was not verified.

• No quality assurance procedures existed such• No quality assurance procedures existed such 
as independent calculations, audits, process 
verification, inspections, etc. 
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Maintenance: America West Flight 2208

• On September 20, 1999, America West flight 2208 received a Ground 
Proximity Warning System (GPWS) warning near Agua Caliente, Arizona, 
indicating that the aircraft was too close to the ground. 

• The crew executed an escape maneuver 
to avoid collision into terrain. In the 
escape maneuver two flight attendants 
were seriously injured. 

• The GPWS warning was a false alarm; 
this airplane had 45 instances of erratic 
operation of the GPWS prior to this flightoperation  of the GPWS prior to this flight. 

• Since 1988 Boeing had issued advisories 
that upgrades to hardware and software 
were needed to avoid false alarms.were needed to avoid false alarms.

• The operator failed to perform 
maintenance and upgrades on the unit. 
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Training: Pipeline Automated Control

• On October 27, 2004, an 8-inch-diameter pipeline in Kansas ruptured, releasing 
approximately 204,000 gallons of anhydrous ammonia. Extensive 
environmental remediation was required.

• The leak was caused by damage during 
the original construction and later 
excavation activity.

• The pipeline controller received alarms 
from the automated control system, which 
were thought to be due to excessive 
ammonia delivery not a leak Theammonia delivery, not a leak. The 
controller overrode the alarms and 
automated shutdowns. 

• The display included trend screens were p y
which could have helped inform the 
controller of the leak, but access through 
the display panel was not obvious and he 
was not trained in their use
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Supplier Management: Allied Terminals

• On November 12, 2008, a 2 million gallon liquid fertilizer tank at Allied 
Terminals, Inc. in Chesapeake, VA collapsed. Two workers performing welding 
operations were seriously injured and a neighborhood was partially flooded. 

• The CSB found that Allied had not 
assured that welds met accepted 
industry standards, and faulted Allied 
for its failure to perform inspections of 
the welds. 

• The CSB also noted that the contractor 
hired by Allied to calculate thehired by Allied to calculate the 
maximum fill height had used faulty 
assumptions in its analyses. The result 
was  an overestimation of the 
allowable liquid level. 
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Documentation: Cootamundra

• On November 12, 2009, a passenger service train was being rerouted at 
Cootamundra, Australia, when the driver, having been told that the route was 
unobstructed, observed a freight train in his path. The driver applied the train 
brakes and stopped just before hitting the freight train. 

• An investigation into the near miss determined a design error in the signaling 
software, which allowed the signal to declare the tracks clear even though a 
train as obstr cting passagetrain was obstructing passage. 

• The incident investigation faulted the 
documentation and quality assurance 
processes during the design phase forprocesses during the design phase for 
not being sufficiently robust to find 
such errors. 

• Potential train clearance issues were 
identified by software engineers during 
development, but were not effectively 
documented and therefore were 
missed during review

52
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Software Safety Lessons Learned: Accidents

Flaws in the software system safety process:

• Poor identification, documentation, and assessment of software and 
computing system hazards.

• Unrealistic software risk assessments.

• Risk reduction counting too much on good processes or testing.

• Testing efforts not focusing enough on actual operating environment• Testing efforts not focusing enough on actual operating environment 
and not sufficiently considering off-nominal conditions. 

• Anomalies not factored into risk assessments or used to further exploreAnomalies not factored into risk assessments or used to further explore 
potential system problems.
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Software Safety Lessons Learned: General

• Software is not as easy to modify as we think - a poorly designed 
system will remain that way.

• Many catastrophic failures are due to latent design errors - past 
success does not guarantee an accident-free future.

• The complex interactions between software hardware and humans areThe complex interactions between software, hardware, and humans are 
often difficult to predict - the way the system performed in test may not 
be the way it will perform in operation.

It i i ibl t t th b f i ifi ti• It is impossible to guarantee the absence of errors in specification,  
design, and development - if we don’t look for them they will find us. 

• Testing will never be as good as we think it is - we cannot expect to find g g p
all our problems in verification.
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The Way ForwardThe Way Forward
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Critical Questions

To promote improved software safety we should ask questions such as: 

• Do plans reflect how business is really done? 

• Is there a convincing story that the safety analysis is complete? 

• Are the reports detailed enough?  Are causes descriptive? 

• Are the hazard controls primarily procedural rather than design 
changes, safety features or devices?

C h l ll b i l d d ifi d?• Can the control strategy actually be implemented and verified?

• Has the risk assessment truly considered the worst case?  What is 
the basis for the likelihood levels? t e bas s o t e e ood e e s

• Are problems found in test and design included in the hazard 
reports and factored into the design?
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Hazard Identification

• The first step in hazard identification is understanding the system, 
including components, interfaces, and system boundaries.

Fi d t h t th ft i b i k d t d i t f f ti lit• Find out what the software is being asked to do, in terms of functionality 
(not “software-ese”). 

• It is not always obvious that software could cause a hazard; sometimes y
software monitors critical data and provides warnings, that if incorrect, 
could lead to an automated or manual response that could result in a 
hazard.

• Think in terms of loss of functionality (must work functions) and 
inadvertent activation (must not work functions).

Think in terms of scenarios not just software failure• Think in terms of scenarios, not just software failure.
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Hazard Cause Descriptions

• Descriptions should tell a mini story including source, mechanism, and 
outcome.

S ti it diti th t th t Source: an activity or a condition that serves as the root cause 

 Mechanism: a means by which the source can bring about the harm

Outcome: the harm itself that might be suffered Outcome: the harm itself that might be suffered

• Hazard causes should be clearly described

Vague: “Software error” Vague: Software error

 Better: “Software fails to issue a command leading to valve failing to open 
resulting in loss of reactor cooling”

• Identify the critical software components, data, and commands.
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Specific Questions

• Are the sensors used for software decisions fault tolerant?
• Has mode transition been considered?
• Will the software properly handle spurious signals?
• Are checks performed before initiating hazardous operations?
• Will the software and system start up and shut down in a known, safe y p ,

state?
• Does the software have a robust error handling capability?
• EtcEtc.
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Risk Assessments

Risk should be based on a number of factors including:
• Design complexity, including human interaction

• Maturity of software

• Degree of system testing

• Use of unproven technologies• Use of unproven technologies

• Experience of development and management personnel

• Robustness of system engineering efforts, including requirements 
management

• Robustness of quality, configuration management, supplier management, 
maintenance, and documentation processes

• Development and assurance processes for heritage and COTS software
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Hazard Controls

• Combine generic good practices and specific safeguards
 Generic requirements (coding standards, peer reviews, requirements 

traceability etc )traceability, etc.)
 Hazard-specific controls, including human (manually closing a valve), 

software (automatically closing a valve), hardware (flow restrictors), and 
process-based controlsp

• Consider multiple, independent approaches

• Describe the control clearly and make sure it is verifiabley
 Vague: Operator will receive indications of valve failure 
 Better: OPSMGR CSCI will provide caution and warnings to operator if 

valve has failed under the following conditionsg
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Testing

Testing should assure that software responds properly to system errors 
and failures (based on hazard analysis). 
T t h ld i l d t i iTests should include at a minimum:

• Boundary conditions (in, out, crossing)
• Invalid inputs and outputs
• Input values of zero, approaching zero
• Minimum and maximum input rates
• Operator errorsp
• Process interrupts
• Hardware failures
• Events out of sequence• Events out of sequence

Safety testing is not the same as functional testing
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Anomaly Reporting

• Do usable and effective reporting systems exist?

• Is there a common formal system for reporting problems?Is there a common, formal system for reporting problems?

• Does a process exist to identify root cause?

• Are software problem reports factored into the hazard analysis and• Are software problem reports factored into the hazard analysis and 
the design?

• Does the organization regularly review accident reports and mishap g g y p p
investigations?

64



Final Thoughts
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Final Thoughts

• Software safety provides a systematic approach to identifying, 
analyzing, and tracking software mitigation and control of hazards 
and hazardous functionsand hazardous functions.

• Software safety is best implemented as part of a broader system 
safety processsafety process.

• Without a systematic process for identifying hazards and assessing 
risks we may underestimate the risk of accidents related to software y
and computing systems.
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Final Thoughts

We should encourage a healthy skepticism in determining whether:

• Our plans are validp

• All hazards have been identified

• The risks make sense

• Our safeguards are effective

• We have verified our systems

• We learn from failure

• Our software engineering and support processes are robust
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Contact Information

Terry Hardy
Di t S f t & Ri k M tDirector, Safety & Risk Management

Great Circle Analytics, LLC
1238 Race Street

Denver, CO, USA 80206
(720) 215-0994

thardy@gcirc.com

www systemsafetyskeptic comwww.systemsafetyskeptic.com
Visit the web site for frequently updated system safety lessons learned, 

accident summaries, and mini-tutorials
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