Touchstone: The OSIRIS-REx Design Reference Mission

Systems Engineering Seminar
September 9, 2013

Ron Mink
OSIRIS-REx Deputy MSE
Outline

• OSIRIS-REx Mission Overview
• Phase-by-Phase Description
• The Role of the DRM in the Selection of OSIRIS-REx
• Critical Design Review and Beyond
• **OSIRIS = Origins, Spectral Interpretation, Resource Identification, and Security**
 – Proposed to NASA’s Discovery Program in 2004
 • University of Arizona and Lockheed-Martin (no NASA partner)
 – Re-proposed to Discovery in 2006
 • Added GSFC as partner
 • Selected for Phase A Concept Study, but GRAIL selected

• **OSIRIS-REx = OSIRIS Regolith Explorer**
 – Proposed to the New Frontiers Program in 2009 and selected as the 3rd New Frontiers mission in May 2011
 – Same principal partners
Science Objectives

• Return and Analyze a Sample
 – Return and analyze a sample of pristine carbonaceous asteroid regolith in an amount sufficient to study the nature, history, and distribution of its constituent minerals and organic material

• Provide Sample Context
 – Document the texture, morphology, geochemistry, and spectral properties of the regolith at the sampling site in situ at scales down to the sub-centimeter

• Understand Asteroid Geology, Dynamics, and Spectroscopy
 – Map the global properties, chemistry, and mineralogy of a primitive carbonaceous asteroid to characterize its geologic and dynamic history and provide context for the returned samples

• Understand the Interaction Between Asteroid Thermal Properties and Dynamics
 – Measure the Yarkovsky effect on a potentially hazardous asteroid and constrain the asteroid properties that contribute to this effect

• Improve Asteroid Astronomy
 – Characterize the integrated global properties of a primitive carbonaceous asteroid to allow for direct comparison with ground-based telescopic data of the entire asteroid population
Target: Near-Earth Asteroid (101955) Bennu

- It is primitive B-class carbonaceous asteroid, with a spectral signature suggesting a carbon- and volatile-rich surface
- Its size (500-m), shape (spheroidal “spinning top”), and rotation state (4.3hr period, 180° obliquity) are known from extensive astronomical characterization
- All available data suggest abundant regolith on the surface available for sampling
- Study of this Potentially Hazardous Asteroid is strategically important to NASA and Congress
Mission Engineering Drivers

• Accurately navigating to the asteroid surface
 – Early determination of Bennu mass, shape, and spin state
 – Surface approach initiated from well-characterized, stable orbit
 – Maneuver parameters updated < 24 hours after tracking data cut-off
 – Step-by-step Touch-and-Go (TAG) maneuver sequence simulated and rehearsed

• Producing remote sensing data products for site selection
 – Early, intensive, global mapping of Bennu
 – Science data processing centralized to provide timely turnaround of integrated surface information for sample site selection

• Acquiring abundant regolith
 – Simulated and tested TAG Sample Acquisition Mechanism (TAGSAM) and Bennu surface contact parameters optimized for low-gravity environment
 – Spacecraft design optimized for precise maneuvering and low dynamic disturbance (solar radiation pressure, surface contact dynamics)

• Safely returning the sample to Earth
 – Stardust mission heritage Sample Return Capsule, personnel, and entry, descent, landing, and recovery procedures utilized
What is the Design Reference Mission?

• The DRM is the mission-level (L2) operations concept for OSIRIS-REx.
 – Provides an end-to-end, detailed description for how the mission addresses the OSIRIS-REx science objectives and engineering drivers
 – Includes 13 mission phases, from launch through Bennu proximity operations, to delivery of the sample to the curation facility following Earth return
 – Defines technical criteria for transitioning from one mission phase to the next, including both science and navigation criteria

• OSIRIS-REx DRM themes
 – Focus on the sample: context, collection, & safe return
 – Exercise a slow, methodical, deliberate approach
 – Apply lessons learned
 – Reduce operations risk and increase sample context knowledge with each step
Mission Timeline

<table>
<thead>
<tr>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch</td>
<td>(9/4/16 - 10/12/16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outbound Cruise</td>
<td>(712 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bennu Acquisition</td>
<td>(8/17/18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach</td>
<td>(87 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Survey</td>
<td>(10 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbit-A</td>
<td>(22 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detailed Survey</td>
<td>(55 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbit-B</td>
<td>(39 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconnaissance</td>
<td>(98 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rehearsal</td>
<td>(28 days)</td>
<td>(2nd attempt)</td>
<td>(3rd attempt)</td>
</tr>
<tr>
<td>Sample Collection</td>
<td>(30 days)</td>
<td>(2nd attempt)</td>
<td>(3rd attempt)</td>
</tr>
<tr>
<td>Asteroid Operations</td>
<td>(505 days)</td>
<td>Operations Margin</td>
<td>(425 days)</td>
</tr>
<tr>
<td>Return Cruise</td>
<td>(934 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth Return</td>
<td>(9/24/23)</td>
<td></td>
<td>Baseline Departure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Last Backup Departure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OSIRIS-REx Flight System

Video: Spacecraft views

Video: TAGSAM deployment
Phase-by-Phase Description
Launch

- 39-day launch period, opening September 4, 2016
- Atlas V 411 launch vehicle (1955kg to C3 = 29.9km²/s²)
- Back up launch opportunity in September 2017

Video: Launch ground track
Outbound Cruise

<table>
<thead>
<tr>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>October</td>
<td>November</td>
</tr>
</tbody>
</table>

Video: Earth gravity assist

- **Time (UTC):** 22 Sep 2017 01:48:34.939
- **Earth Range (km):** 404699.575164
- **Sun Range (km):** 15819353.326821
- **R36 Range (km):** 54209444.242235
- **OSIRIS-RExeph Angel (deg):** 6.881
- **OSIRIS-RExPha Angel (deg):** 86.234
Approach

- Start searching for Bennu 60 days before rendezvous
- Perform 3-burn approach maneuver sequence
- Measure RQ36 light curve, phase function and integrated spectral properties
- Survey within 31km of Bennu for >10cm diameter natural satellites
- Image for early shape model development
Preliminary Survey

- Bennu mass estimated to 1% accuracy
 - DSN provides range & Doppler tracking during 3 hyperbolic survey passes
 - NavCam collects images at 4-hour intervals for optical navigation
 - PolyCam, MapCam, and OLA collect additional data to refine the shape model
Orbital A

- Establish 1.5 km-radius circular terminator orbit
- Transition from stellar navigation to surface landmark optical navigation for asteroid-relative state
- Collect imagery for global high-resolution shape model
Detailed Survey

- Collect imagery for identification of safety hazards (rocks, craters)
- Gather global spectral data to determine composition
- Measure temperatures across the surface
- Search for dust & gas plumes
Detailed Survey: Spectral Survey Scan

Video: Detailed Survey scan

27 Nov 2018 00:02:46.000

Earth (0.83 AU)
Orbital B

- Establish 1.0 km-radius terminator orbit, the staging point for recon & sampling
- Map gravity field via two 3-day periods of continuous DSN tracking
- Map topography with OLA
- Map elemental abundances with REXIS
- Characterize up to 12 candidate sample sites to 5 cm resolution with PolyCam
- Select 4 sites for detailed reconnaissance
Reconnaissance

- Fly over 4 sites at 225m range
- Acquire PolyCam images with sub-cm resolution
- Acquire MapCam images with 5cm resolution
- Fly over 2 best sites at 525m range
- Acquire MapCam color images
- Acquire OVIRS & OTES spectra
- Acquire OLA topographic data
- Select primary sample site
TAG (1 of 2)
(TAG Rehearsal & Sample Collection Phases)
Measure Sample Mass

Video: Sample stow in SRC

Image TAGSAM Head

Stow Sample
Return Cruise

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>March</td>
<td>Depart RQ36</td>
<td>3-4-2021</td>
</tr>
<tr>
<td>2022</td>
<td>March</td>
<td>1 Mar 2021</td>
<td>00:00:00.000</td>
</tr>
<tr>
<td>2023</td>
<td>March</td>
<td>Earth Return</td>
<td>9-24-2023</td>
</tr>
</tbody>
</table>
Earth Return & Recovery
The Role of the DRM in the Selection of OSIRIS-REx
Mission Formulation Process

- Mission Product
- Mission Elements
- Working Groups

1. Science Objectives
2. Design Reference Asteroid
3. Science Working Groups
4. DRM Working Group
5. Systems Engineering Working Group
7. Design Reference Mission
8. Science Instrument Payload
9. Spacecraft
10. Ground System
“Low Risk” Ranking

Step 1 Proposal
“The OSIRIS-Rex mission has been rated LOW Risk. . . The combination of a credible Design Reference Mission, strong basis of estimate, and substantial cost saving opportunities gives the project an excellent pre-Phase A cost risk posture and demonstrates the feasibility of the proposed cost.

Phase A Concept Study Report
“OSIRIS-Rex is rated LOW Risk . . . A detailed Design Reference Mission was developed that combined with the analysis performed verified the mission concept; provided a solid basis for the mission design and was an essential tool in the design process.”
Step 1 Proposal

“The OSIRIS-REx mission design approach, particularly the proposed proximity operations strategy, is mature, focused, appropriately cautious, and has significant margin. The project has established a configuration controlled, sharply defined Design Reference Mission (DRM) baseline which serves as the backbone for focusing the design effort, both at the mission level and at the spacecraft level. The DRM design is described in extensive detail, indicating an extremely good understanding of the risks associated with an asteroid sampling mission and the approaches best suited to mitigate them.”

Phase A Concept Study Report

“The detail of the Design Reference Mission (DRM) combined with the analysis performed to verify the mission concept provides a solid basis for the mission design. The project has established a well-defined DRM, which is a very effective tool for understanding the mission. The DRM focuses the design effort, both at the mission level and at the spacecraft level. The DRM design is described in extensive detail, indicating an extremely good understanding of the risks associated with an asteroid sampling mission and the approaches best suited to mitigate them.”
Step 1 Proposal
• “The learn-as-you-go approach to proximity operations and the detailed, cautious approach to the Touch-and-Go (TAG) event represent a very conservative approach to retrieving a sample from a small body.”
• “OSIRIS-REx does a thorough job of remotely characterizing the surface . . . “
• “The team’s operational experience is evident in the proposed approach, and the approach incorporates lessons learned from NEAR, Hayabusa, Phoenix, and Stardust.”

Phase A Concept Study Report
• “The plan for asteroid reconnaissance and sample collection is thorough and well conceived.”
• “The Touch and Go (TAG) rehearsals of the spacecraft and sampler head approach to the surface are very well designed to assure that the sample is obtained with reliability within the surface velocity constraints of the Sampler Head.”
• “Margins are substantial (171 days) to incorporate lessons learned at the asteroid, and provision for three sampling operations is included when only one should be needed.”
Critical Design Review and Beyond
Verification, Validation, and Operations Planning

• Serves as the starting point for developing contingency plans
 • Second sampling operation
 • Detection of a natural satellite around Bennu
 • Loss of a science instrument
• Serves as the starting point for science and mission operations planning, including development of command blocks
• Provides the scenarios for system-level verification and validation testing
 • System performance
 • Environmental
• Provides the scenarios for post-launch Operational Readiness Tests
Summary

• The OSIRIS-REx DRM was matured over multiple proposal cycles

• The DRM helps maintain the team’s focus on OSIRIS-REx’s primary objective: collect and return an asteroid regolith sample to Earth

• The DRM was a key contributor to OSIRIS-REx’s selection as NASA’s 3rd New Frontiers mission

• The DRM continues to guide system verification and validation testing and operations planning
Acknowledgements

• The late Dr. Michael Drake, first OSIRIS-REx PI, University of Arizona
• Dr. Dante Lauretta, current OSIRIS-REx PI, University of Arizona
• John Oberright, first OSIRIS-REx MSE, GSFC retired
• Dave Everett, current OSIRIS-REx MSE, GSFC
• Brian Sutter, first and current Mission Designer, Lockheed Martin