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The Challenge

The next generation of NASA science and exploration missions will
require “order of magnitude” improvements in on-board
computing power ...

Mission Enabling Science Algorithms & Applications

* Real-time Sensing and Control ¢ Real-time “Situational

e On-Board Data Volume Awareness”
Reduction * “Intelligent Instrument” Data
e Real-time Image Processing Selection / Compression
e Autonomous Operations  Real-time Calibration /
* On-Board Product Generation Correction
 Real-time Event / Feature e Inter-platform Collaboration
Detection  Distributed Measurement

* On-Board Classification Missions
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Our Initial Approach

* The traditional path of developing radiation
hardened flight processor will not work ... they are
always one or two generations behind

* In many applications data does not need to be
100% perfect, 100% of the time ... occasional “blips”
are OK if they are handled properly, especially if you
can process 100x MORE DATA using radiation
tolerant™* processing components

e Accept that radiation induced upsets will happen
occasionally ... and just deal with them appropriately
 Target 10x to 100x improvement in “MIPS/watt”

*Radiation tolerant — susceptible to radiation induced upsets (bit flips) but not radiation induced destructive failures (latch-up)
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Our Solution

SpaceCube: a high performance reconfigurable
science / mission data processor based on Xilinx
Virtex FPGAs

e Hybrid processing ... CPU, DSP and FPGA logic
 Integrated “radiation upset mitigation” techniques
e SpaceCube “core software” infrastructure (cFE/cFS
and “SpaceCube Linux”, with Xenomai)

* Small “critical function” manager/watchdog

e Standard high-speed (multi-Gbps) interfaces

*Note: SpaceCube 2.0 and SpaceCube Mini can be populated with either commercial Virtex 5 FX130T parts or radiation hardened
Virtex 5 QV parts ... offering system developers the option of trading computing performance for radiation performance

SpaceCube Overview - NASA Goddard Space Flight Center — February 2018



NASA Risk Assessment

Establishing Acceptable SEE Error Rates Using a Risk-based Engineering Analysis Approach

Assessment Process

Radiation
Environment

Establish Device
WCA

Establish System
WCA

Establish Application
WCA

ID Functional
Independence

Selective FPGA
Mitigation

one orbit (96 minutes
Rendezvous (30 min)
Capture (77 sec)

)

NASA Risk Assessment

Safety

Estimated likelihood of
Safety event occurrence

Technical
Estimated likelihood of

not meeting performance

Likelihood

requirements

5 Very High

4 High

(Pse> 107

(Pt > 50%)

3 Moderate
2 Low

1 Very Low (0.1% < Pr = 2%)

<0.1% = not a credible risk

¥‘ S—_TU0%Bewice____| Estimated Restore WCA Upset
=0 Rates

PCC WCA| RPO PCC | RSW PCC| RPO + RSW
5760 0.484% | 1.934% | 1.074% | 0.222%  1.296% |
1800 0.151% | 0.604% | 0.336% | 0.069% | 0.405% |

0.006% | 0.026% | 0.014% | 0.003% | 0.017%

Note: assumes BRAM Miitigation

Note: Actual utilization for RPO and RSW PCCs as of 4/18/2016
Note: assumes RPO & RSW PCCs must be error-free for full operation

Single string with no TMR or other mitigation
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Being Reconfigurable ...

... equals BIG SAVINGS (both time and money)

During mission development and testing
 Design changes without PCB changes
o “Late” fixes without breaking integration
During mission operations
 On-orbit hybrid algorithm updates
e Adaptive processing modes
- hi-reliability vs. high-performance
- intelligently adapt to current environment
From mission to mission
e Same avionics reconfigured for new mission
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Commercial Processor Trend

“Fastest” consumer CPU in 2011

Intel Core i7 3960X (Hexcore)  —__ 1

Intel Core i7 980 (Hex core) —.

Intel Core 2 (Quad core) —\\\\ Intel Core i7 920 (Quad core) 0\

AMD Athlon FX —. _ Intel Core 2 QX9770 (Quad core) \

Intel Pentium4 —_

AMD Athlon XP —_

Intel Pentium Il N
PowerPC750 ~~
Intel Pentium Pro — ‘

Intel Pentium —_
",

",

Intel 286~ Motorola 68040
\ N
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Space Processor Trend
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Processor Trend Comparison
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SpaceCube Closes the Gap
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Processor Comparison

Processor MIPS Power MIPS/W
MIL-STD-1750A

RAD6000

RAD750

LEON 3FT
LEON3FT Dual-Core

BRE440 (PPC)
Maxwell SCS750
SpaceCube 1.0
SpaceCube 2.0

SpaceCube Mini
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SpaceCube 1.0 vs RAD /750

25 RAD750 6U Processor Cards 1 SpaceCube Processor Card

Single String Box Dual Redundant Box
Power 600W Power 37W
Weight 100-Ibs Weight 7.5-1bs

Volume 48.6 cu-ft Volume 1.2 cu-ft
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Performance Comparisons

1
_mHn_
N
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B

Computational Density (CD) & CD per Watt

CD (GOPS) CD/W (GOPS/W)

oo g o] om| on] on| on| wws| o] o] on| o
BAE Systems RAD5545 ' 3.73 186  0.19 0.19
Boeing Maestro 11.99 1274 0.54 0.46
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. 5 _
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- |
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Algorithm Acceleration

Application Acceleration vs CPU

SAR Virtex-4 79X vs PowerPC 405
Altimeter FX60 (250MHz, 300 MIPS)

RNS GNFIR Virtex-4 25X vs PowerPC 405
FPU, Edge FX60 (250MHz, 300 MIPS)

HHT Virtex-1 3X vs Xeon Dual-Core

EMD, Spline 2000 (2.4GHz, 3000 MIPS)

Hyperspectral Data Virtex-1 2X vs Xeon Dual-Core
Compression 1000 (2.4GHz, 3000 MIPS)

GOES-8 Ground System Virtex-1 6X vs Xeon Dual-Core
Sun correction 300E (2.4GHz, 3000 MIPS)

O All functions involve processing large data sets (1MB+)
O All timing includes moving data to/from FPGA
L SpaceCube 2.0 is 4x to 20x more capable than these earlier systems
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On-Board Data Reduction

'SAR Nadir
f f f f f f f Altimetry
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On-Board Data Reduction (cont.)

50 -100 150
'Orlggmal b.-'IatlabEDutput SpaceCube Outpirt

On-board ﬁroduct |
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On-Board Product Generation

157
13002
2634, -0.67387. 0.03428, 012583
ters): 14458, 78750, 81.443]
y Confidence: 88.235%

e Classification

e Product Generation

* Event Detection

* Atmospheric Correction
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Customer VehiCIe

* [nspect
e Refuel

* Repair

e Replace
e Relocate

Servicing Vehicle

20
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Imaging Spectrometers

Image Credit: HysplIRI Mission Concept Team

A Evaporative Stress Index

1 month composite ending September 5, 2012

 Direct broadcast

* Real-time products

e Data volume reduction
e Adaptive processing

e Sensor webs

Standardized ET/PET anomalies
i

-1a +1a
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TRN for Mars Missions

Terrain
Relative -
Navigation '

Backshell Z
Avoidance Divert

Heatshield

Separation
Radar Data
Collection

Backshell
Separation

Multi-Point
Divert

Credit: JPL Mars EDL Team
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More Rover Applications?

Fast traverse
Terrain mapping (while driving)
Background science (while driving)
Entry/Descent/Landing documentation (video)
* Landing
e Parachute release
e Sky Crane
On-board processing for efficient use of downlink

Image Credit: JPL / MSSS MARDI Team
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Real-time Mars Terrain Analysis

SOL 780:
MARDI DEM

Terrain analysis of
1 cm (x.y) DEM

Relative Statistics
Elevation
(cm)
StdDev(z)=39cm

Mn/SD(z)=2.8
Slope
(deg.)

Std Dev (Slp) =20 4 deg,

Mn/SD(3lp) = 1.6
RMS
Roughness
(mm)

Sid Dev (RMS) = 0.058 mm
Mn/SD(RMS) = 1.3

*MNOTE: DEM made from 26 overlapping MARDI video frames (nadir viewing)

Figure by Garvin for MSL Science team: MARDI-based DEM derived from sidewalk video imaging mode data collection on the 22 m drive to “Book Cliffs” illustrating the
power of fixed-nadir video imaging for terrain analys%@%ﬁéwﬁgw gmmmgggﬁ;%mﬁi&p@ﬁﬁ;‘smpgﬁuaw 2018
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On-Board Image Processing

Long Range Camera on Rendezvous

GNFIR POSE ESTIMATE
GMT: 133:16:28:43.757
Frame |D: 0x73F13002

Demn i, SO & Short Range Camera on Deploy

Pose Quality Confidence: 88.235%

Flight Image RNS Tracking Solution

HST-SMA4

GSFC SpaceCube 1.0a - Hubble SM 4 (May 2009):
e Autonomous Rendezvous and Docking Experiment
* Hosted camera AGC and two Pose algorithms

Flight Image

N

RNS Tracking Solution

STS-125 Payload Bay

SpaceCube Overview - NASA Goddard Space Flight Center — February 2018



On-Board Image Processing

- Successfully tracked Hubble position and orientation in real-time operations
- FPGA Algorithm Acceleration was required to meet 3Hz loop requirement

Rendezvous Deploy (Docking Ring)

- Typical space flight processors are 25-100x too slow for this application
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SMART Sounding Rocket Experiment

SMART ———— Modula.r,
SubTec-4 » Reconfigurable

Structure

= — — T
Dllgltal Y 11 " r I | Solid State
Video | % L Drives and

Module [ % Battery (behind)

Rocket-
Cam™

- —ni (| ] GigE
] | ==/ Ethernet
Tunable | | i . Camera
Thermal - \
Plate @ i ) Space
gl 4 =~ ™~ Cubevls

o< - Ll SpaceCube 1.5 on the SMART sounding rocket
Interface payload (SubTec-5, launched June 2011):
* Multi-function avionics

e Collaboration with ORS
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SMART Video

SpaceCube 1.5 - SMART GigE Camera Clip
NASA Wallops Flight Facility - June 10, 2011
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SpaceCube on the ISS

il g
]

6 RARETRAR R RADRD AR NN NN
{
]

ELC2 B
MISSE-7/8 ELC3 = E
SpaceCube v1.0 RRM3 Sich
SpaceCube v2.0 e

111

117
i I ]
LT

=
=
5
=
H
S
=
=
5
i

-
=
=,

ik
1]

LTI

y .'ll.l:ll'll'l'llll.l.lll

y [

zells T BEGL [ B
SfPHe | S
~ SpaceCubewi.o

sibis] B B
| SpaceCube v1.0

ISS Flying Towards You g2 U
L=SpaceCubeMint—
SpaceCube v2.0

Image Credit: DoD Space Test Program
CSP

.
i
(¥



SpaceCube Upset Mitigation

“First” to re-program an FPGA in space!

Orbit ISS

Days in orbit 1800+
Total SEUs detected & corrected 200+
Total SEU-induced resets 6

Total SEU-induced reset downtime 30 min
Total processor availability 99.99%

GSFC SpaceCube 1.0b (Nov 2009):

» “Radiation Hardened by Software”
Experiment (RHBS)

* Autonomous Landing Application

* Collaboration with NRL and the DoD
Space Test Program (STP)
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On-Orbit Upset Locations
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On-Orbit Upset Locations
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ISE 2.0 on ISS — August 2013

ISS SpaceCube Experiment 2.0 (ISE 2.0)

on STP-H4

T

-
Al

} 3

l ‘hreStat:{ o _
7 ~ B

SpaceCube 2.0  EHD Plate jrasafato 1.0
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et chphised by

ISE 2.0 Sample Data & Images
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ISEM on STP-H5 ISS Payload

Raven Suite Includes:
e SpaceCube 2.0

ISEM, SpaceCub * Visible Camera
yh _____ M * IR Camera
, * Lidar

& SpaceCube 2.0 EM

2o —— 7

ISEM Stack Includes:
* SpaceCube Mini

%‘

* FP Spectrometer , J - . i .
The Space Test Program-H5 (STP-H5) external payload, a complement of 13 unique
e EHD Pump . RS
experiments from seven government agencies, is integrated and flown under the management
e CSP & Camera and direction of the Department of Defense’s Space Test Program.

Installed on ISS February 27, 2017
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STP-H5 Installed on ISS - February 2017

SpaceCube Overview - NASA Goddard Space Flight Center — February 2018



ISEM FPS Science

Continuous Atmospheric Methane Measurements From ISS
Fabry-perot Spectrometer Measures Absorption By
Atmospheric Gases In Sunlight Reflected Off The Earth
Demonstrating 900:1 Downlink Data Volume Reduction
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Raven Experiment Overview

Raven is a technology demonstration experiment on the Space Test Program-Houston 5 (STP-H5)
payload, launched to the ISS on the SpaceX CRS-10 mission in February, 2017. During its two year
mission on ISS, it will advance the state-of-the-art in NASA’s relative navigation capabilities.

* Raven contains three sensors (visible,
infrared, lidar), a high-performance &
reliable computing platform (SpaceCube)
and advanced machine vision algorithms

« Raven tracks visiting vehicles to ISS,
developing an “off-the-shelf’ relative
navigation capability for NASA

Visible Infrared
Camera : Camera

Raven
(Deployed Configuration)



\WIE SERVy,
s ;_\\K C/ :’/70

’.’% Raven — Sample Data

Raven is currently generating valuable science that is reducing the risk for future NASA
missions that require rendezvous and proximity operations systems

Dragon Tracking (VisCam)

Raven demonstrated successful on-board vehicle tracking during SpaceX CRS-10 departure
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and Current Research

41
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SpaceCube Family Overview

STS-125
MISSE-7
STP-H4
STP-H5
STP-H6

2.0-EM

2013 STP-H4
2016 STP-H5

- 3 ‘ —
2016 STP-H5, UVSC-GEO, Many proposals
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2018 RRMS3

2018 STP-H6 (NavCube)
2018 NEODaC

2020 Restore-L

Many NASA proposals



SpaceCube 2.0 Block Diagram ms —

MDM-15

Airborn
4x HS Modules

Airborn
Nano 85-pin
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SpaceCube 2.0 Highlights 'i-
8 e

Heritage

* GOAL: close the gap with commercial « Currently TRL-8
processors while retaining reliability

lecnhnology Leadership Awaras 2014

- Started in 2006 at GSFC as IR&D * Leverages 10+ years of design

. 42+ Xilinx device-years on orbit heritage and operation experience

« 22 Xilinxs in space by 2017 * $10M+ of NRE

* 8 systems in space by 2018 » Adopted by SSPD for all missions

* Various R&D efforts on hardware - IPC 6012B Class 3/A PWB Reliability

acceleration Sk )
* Modular: 9 Mission-Unique I/O cards

» Powerful hybrid data processing « Run-Time Reconfigurable
In a compact 3U size
» Parallel data processing: Xilinx Virtex-5 FPGA SpaceCube v2.0
— FPGA + DSP + Processor(s) |
» SpaceCube can move 3,000x

more data than a sequential
processor per clock cycle

SpaceCube is a
Mission-Enabling Technology
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SpaceCube 2.0
Processor Card

Power Draw: 6-15W
Weight: 0.98-Ibs
22 Layers, Via-in-Pad

IPC 6012B Class 3/A

o 2x Xilinx Virtex-5 (QR) FX130T FPGAs
» 1x Aeroflex CCGA FPGA

—  Xilinx Configuration, Watchdog, Timers
— Auxiliary Command/Telemetry port

* 1x 128Mb PROM, contains initial Xilinx configuration files

* 1x 16MB SRAM, rad-hard with auto EDAC/scrub feature

* 4x 512MB DDR SDRAM

» 2x 4GB NAND Flash

« 16-channel Analog/Digital circuit for system health

Optional 10/100 Ethernet interface

Gigabit interfaces: 4x external, 2x on backplane

12x Full-Duplex dedicated differential channels

88 GPIO/LVDS channels directly to Xilinx FPGAs

Mechanical support for heat pipes and stiffener for Xilinx devices

B3R LNhe =
VIRTEX-5

2014 Mentor Graphics “Most innovative design worldwide in the Military/Aerospace sector”
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Mission-Unigue I/O Card Examples

'Restore-L Video/Spacecraft Interface Card LIDAR Digitizer, Front-End, and Laser Card

A
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Robotic Refueling Mission 3 SpaceCube

1553/Ethernet/Digital Card

High Level Requirements:
e Interface with ISS and RRM3 instruments:
e Cameras, thermal imager, motors
* Monitor/Control cryo-cooler and fuel transfer
e Stream video data
* Motor control of robotic tools
e Host Wireless Access Point
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NEODaC Instrument Development

8x 3K x 3K detectors

21-ft
> 12 Gbps

21-ft
8x 1.6Gbps ch.

> “HOST”

* Near Earth Objects Detection and
Characterization

— Funded by NASA SMD/Planetary

« SerDes output drivers over 21-t.

» SpaceCube FPGAs being used to

Interface with detectors, host on-board

Transmitter % 1 Bit Error

data processing applications and ing Pre-emphasis Count
compression

e Successful multi-detector readout with
SpaceCube completed during TVAC

) e Note: BER calculation assumes at least 1 error
* F“ght system: 8 Processor Cards » 58-hours of error-free transmission

SpaceCube Overview - NASA Goddard Space Flight Center — February 2018
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SpaceCube DTN Acceleration

FPGA IP Core to Accelerate components of the RFC 5050 Bundle Protocol
Specification
Targets
—  SpaceCube 2.0 — Xilinx Virtex 5
—  SpaceCube 3.0 / Mustang — Microsemi RTG4
BP Transmission
—  Software Seeds Header Information
—  Hardware Auto Update Values and Encodes Header
—  Payload Data is DMA'd from Memory
—  Theoretical Transmission Rates
Virtex 5w/ 125 Mhz Clock = 3.7 Gb/s
« RTG4 w/ 50 MHz Clock = 1.5 Gb/s
BP Reception
—  Hardware decodes Header
—  Header and Payload Data are DMA'd to Memory
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SpaceCube “Spin-offs”
and Technology Infusion

9 Mission-Unique SpaceCube I/0 Cards in various
stages of integration and test

* SSCO Video Distribution Unit
* GRSSLi (Code 590)
* NavCube (Code 590)
« GEDI Digitizer design
* Complex PWB design using 1mm pitch CCGAs
— TESS, GEDI, Mustang, OSIRIS-REXx
* Proposal development
— CycloPPS (Code 550 and Code 600)
— DTN (Code 450)
— DFB (Code 600)
— Various others
* NICER/GEDI Ethernet Circuitry
« CHREC Space Processor > Commercialization
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Spinoff Technology Results

LIDAR Instrument — Configurable Resolution

GPS Receiver — L1/L2C Tracking

“NavCube” i P

Mww'ﬁw"" Wil
Port the “World Recording Breaking” [ M
g g | - M\wwﬂ

Navigator technology to SpaceCube ||
Full qualification, will fly on STP-H6
2016 Goddard Innovation of the Year [ "'
6 RTAXs = % of 1 Virtex 5
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Restore L AviOnIcS

Restore-L DuaI SpaceCube Payload Control Computers

High Level Requirements:

Interface with Spacecraft and Payload Busses
Interface with vision sensors

Host Relative Proximity Operations application
Host Robotic Manipulation Control application

Robot SpaceCube -
Control =
Unit Sensor —

SpaceCube p=—= Interface |

Robot Unit =
Control : s =
Unit paceCube =

24 Sensors

Restore-L will fly 21 Xilinx Virtex-5 FPGAs

Restore-L Capture of Landsat 7
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Restore-L Capture and Refuel Video







Image Credits: Naval Research Lab

Ultraviolet Spectro-Coronagraph Pathfinder

The NRL UVSC Pathfinder combines an ultra-violet

e Scheduled to fly in 2019 on STPSat6
e SpaceCube Mini serves as the UVSC instrument processor

spectrograph with a novel, high-throughput coronagraph to
search for the presence of suprathermal seed particles near
the sun. These particles are believed to be necessary for the
production of large solar energetic particle (SEP) events.

e Hybrid high-performance fault-tolerant software architecture
* First flight of SpaceCube technology in a GEO orbit

The largest SEP events are thought to be produced when shocks created
by fast-moving coronal mass ejections (CMEs) interact with a pre-existing
population of seed particles. UVSC will detect the signature of these seed
particles by measuring enhancements of the wings of the hydrogen
Lyman alpha spectral line. The coronagraph section blocks the solar disk
light to allow the corona to be imaged at 1.8 and 3 solar radii, which is
the region where CME shocks are first formed.

SEP events disrupt Navy/DoD space operations with little or no warning
by damaging critical spacecraft sub-systems. UVSC will demonstrate a
new capability that will extend the warning time for SEP events and
thereby allow time for mitigating the effects of these hazards.
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STP-H6 Experiment Pallet

Image Credit: DoD Space Test Program
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SpaceCubeX End-to-End Framework

User Selection Benchmarks Suite SpaceCu be X: Onboard Computing

*  Microkernels ;
e Applications AnaIYSIS Framework

ArchGen

Processor -
Acce I erator Pa rtltlon Interface Interface Interface

Compile &

Topology

Interconnects

Interfaces

Memory

Sensor Simulation

interfaces Generator
I/O

Interface Interface

Memory Interface
Manager

Interface

Peripherals

MONITOR

Report
Component Performance EEr—

Database Models e
-Radiation
-Performance

End to end tools which enable rapid, accurate exploration of on-board computing
architectures
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SpaceCubeX: Performance Comparison

Performance Analysis for SpaceCubeX Architectures
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H SpaceCube 2.0 B Zynq (A9, 2) H Hybrid (A53, 4) H Hybrid (FPGA) Next-gen Hybrid (1 FPGA) B Next-gen Hybrid (2 FPGA)

Hybrid Multi-Core/FPGA Architectures provides orders of magnitude higher performance

*Simulation performance verified to be accurate within 1%-6% via emulation testing
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SpaceCube 3.0 Architecture

Multi-Gigabit
Science Data
Ports

Ethernet

RS-422/LVDS

High-Speed
Volatile Memory

System Monitoring

Radiation hardened
FPGA (RTG4)

High-Speed
Volatile Memory

Non-Volatile
Memory

Processing Elements

High Performance
FPGA-1 (MPSoC)
Multi-core CPU, Real-
time CPU, and FPGA/
DSP Logic

Expansion Plug-in
Module
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High Performance
FPGA-2 (MPSoC)
Multi-core CPU, Real-
time CPU, and FPGA/
DSP Logic

Multi-Many Core CPU /
High Performance
Space Computer

(HPSC)

High-speed A/D or
other module




Conclusions

SpaceCube is a MISSION ENABLING technology

* Delivers 10x to 100x on-board computing power
 Cross-cutting (Earth/Space/Planetary/Exploration)
* Being reconfigurable equals BIG SAVINGS

* Past research / missions have proven viability

* Ready for infusion into operational missions
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o

The SpaceCube Team
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Thank you! Questions?

tom.flatley@nasa.gov
spacecube.nasa.gov

Special thanks to our sponsors: NASA/GSFC IR&D, NASA Satellite Servicing Programs Division (SSPD), NASA Earth
Science Technology Office (ESTO), DoD Space Test Program (STP), DoD Operationally Responsive Space (ORS)
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